Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 552255)
Консорциум Контекстум Информационная технология сбора цифрового контента
Уважаемые СТУДЕНТЫ и СОТРУДНИКИ ВУЗов, использующие нашу ЭБС. Рекомендуем использовать новую версию сайта.

Математика (для экономистов)

0   0
ИздательствоБурятский государственный университет
Страниц179
ID633961
АннотацияУчебное пособие соответствует требованиям Федерального государственного образовательного стандарта высшего образования по направлениям подготовки 38.03.01 Экономика, 38.03.02 Менеджмент, 38.03.03 Управление персоналом, 38.03.04 Государственное и муниципальное управление, 38.03.05 Бизнес-информатика. В пособии предлагается изложение основ дисциплины «Математика» по главам: линейная алгебра, матрицы и определители, системы линейных уравнений, аналитическая геометрия, введение в анализ, дифференциальное исчисление функций одной переменной, интегральное исчисление функций одной переменной, линейное программирование. Также в пособии даются контрольные работы с подробными указаниями к их выполнению для самостоятельной работы обучающихся.
Кем рекомендованоУМС БГУ
Кому рекомендованодля обучающихся по направлениям подготовки 38.03.01 Экономика, 38.03.02 Менеджмент, 38.03.03 Управление персоналом, 38.03.04 Государственное и муниципальное управление, 38.03.05 Бизнес-информатика
ISBN978-5-9793-1048-0
УДК51(075.8)
ББК22.11я73
Математика (для экономистов) [Электронный ресурс] / А.М. Барлуков .— Улан-Удэ : Бурятский государственный университет, 2017 .— 179 с. — ISBN 978-5-9793-1048-0 .— Режим доступа: https://rucont.ru/efd/633961

Предпросмотр (выдержки из произведения)

В пособии предлагается изложение основ дисциплины «Математика» по главам: линейная алгебра, матрицы и определители, системы линейных уравнений, аналитическая геометрия, введение в анализ, дифференциальное исчисление функций одной переменной, интегральное исчисление функций одной переменной, линейное программирование. <...> Также в пособии даются контрольные работы с подробными указаниями к их выполнению для самостоятельной работы обучающихся. <...> Также в пособии даются контрольные работы с подробными указаниями к их выполнению для самостоятельной работы обучающихся. <...> Суммой матриц А и В называется матрица С сij m n , элементы которой определяются по формулам: i I ,  )(    j J c a b , : ij   ij ij т. e. элементы матрицы С равны сумме соответствующих элементов матриц А и В. <...> Произведением матрицы А на матрицу В называется матрица размера mn С сij m n , элементы которой вычисляются по  )( формуле: p    j J : i I , cij  k 1   C A B . a bik kj , т. е. элемент матрицы С с номерами i и j равен сумме попарных произведений элементов i-й строки матрицы А на соответствующие элементы j-го столбца матрицы В (правило «строка на столбец»). <...> Минором ijM элемента ija матрицы А называется определитель матрицы, полученной из матрицы А вычеркиванием i-й строки и j-гo столбца (т. е. строки и столбца, на пересечении которых находится этот элемент). <...> Определитель матрицы А равен определителю транспонированной матрицы тA , т. е. det A = det тA . <...> Если хотя бы одна строка матрицы А состоит из нулей, то определитель этой матрицы равен нулю. <...> Если все элементы некоторой строки матрицы умножить на действительное число жится на . <...> Пусть матрицы А, В, С отличаются друг от друга только k-й строкой, причем элементы k-й строки матрицы С равны сумме соответствующих элементов k-х строк матриц А и В, т. е.      :) и   : i J j J i k , тогда detC  det A etd B. кой-либо строки прибавить соответствующие элементы другой строки, умноженные на число 7°. <...> Обозначим через Х матрицу-столбец <...>
Математика_(для_экономистов).pdf
Стр.1
Стр.2
Стр.3
Стр.4
Стр.5
Стр.176
Стр.177
Стр.178
Математика_(для_экономистов).pdf
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ БУРЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ А. М. Барлуков МАТЕМАТИКА (для экономистов) Рекомендовано Учебно-методическим советом БГУ в качестве учебного пособия для обучающихся по направлениям подготовки 38.03.01 Экономика, 38.03.02 Менеджмент, 38.03.03 Управление персоналом, 38.03.04 Государственное и муниципальное управление, 38.03.05 Бизнес-информатика Улан-Удэ Издательство Бурятского госуниверситета 2017
Стр.1
УДК 51 (075.8) ББК 22.1я73 Б 253 Утверждено к печати редакционно-издательским советом Бурятского государственного университета Рецензенты В. В. Убодоев, канд. физ.-мат. наук, доц. БГУ П. Л. Абидуев, канд. физ.-мат. наук, доц. БГСХА Барлуков А. М. Б 253 Математика (для экономистов): учебное пособие. — Улан-Удэ: Изд-во Бурятского госуниверситета, 2017. — 106 с. ISBN 978-5-9793-0066-5 Учебное пособие соответствует требованиям Федерального государственного образовательного стандарта высшего образования по направлениям подготовки 38.03.01 Экономика, 38.03.02 Менеджмент, 38.03.03 Управление персоналом, 38.03.04 Государственное и муниципальное управление, 38.03.05 Бизнес-информатика. В пособии предлагается изложение основ дисциплины «Математика» по главам: линейная алгебра, матрицы и определители, системы линейных уравнений, аналитическая геометрия, введение в анализ, дифференциальное исчисление функций одной переменной, интегральное исчисление функций одной переменной, линейное программирование. Также в пособии даются контрольные работы с подробными указаниями к их выполнению для самостоятельной работы обучающихся. ISBN 978-5-9793-0066-5 © Бурятский госуниверситет, 2017
Стр.2
ПРЕДИСЛОВИЕ Настоящее учебное пособие по математике, составленное в соответствии с программой этого курса и предназначенное для обучающихся экономических направлений подготовки бакалавриата Бурятского государственного университета, будет также полезно для школьников и учителей средней школы, работающих в классах с углубленным изучением математики. Необходимость этого пособия вызвана недостаточным количеством методических пособий и указаний, рекомендуемых Министерством образования и науки РФ. В пособии рассматриваются вопросы, связанные с понятиями матриц и определителей, систем линейных уравнений, линейной алгебры, аналитической геометрии, введения в анализ, дифференциального и интегрального исчисления функций одной переменной, линейного программирования. Также в пособии даются контрольные работы с подробными указаниями к их выполнению для самостоятельной работы обучающихся. Ставится следующая цель — помочь студентам и школьникам освоить теоретический материал, а также овладеть приемами и методами решения задач по дисциплине «Математика». Данное пособие направлено на формирование у обучающихся следующих общекультурных и профессиональных компетенций:  владеть культурой мышления, быть способным к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения (ОК-1);  логически верно, аргументированно и ясно выстроить устную и письменную речь (ОК-6);  быть способным к саморазвитию, повышению своей квалификации и мастерства (ОК-9);  собирать и анализировать исходные данные, необходимые для расчета экономических и социально-экономических показателей, характеризующих деятельность хозяйствующих субъектов (ПК-1);  на основе типовых методик и действующей нормативноправовой базы рассчитывать экономические и социальноэкономические показатели, характеризующие деятельность хозяйствующих субъектов (ПК-2); 3
Стр.3
 выполнять расчеты, необходимые для составления экономических разделов планов. Обосновывать их и представлять результаты работы в соответствии с принятыми в организации стандартами (ПК-3);  осуществлять сбор, анализ и обработку данных, необходимых для решения поставленных задач (ПК-4);  выбирать инструментальные средства для обработки данных в соответствии с поставленной задачей, анализировать результаты расчетов и обосновывать полученные выводы (ПК-5). В результате изучения учебной дисциплины обучающиеся должны: Знать: • теоретические положения всех разделов дисциплины «Математика»; • понятийный аппарат математики; • понятийный аппарат математического анализа; • язык математики как универсальный язык науки; • основы математических методов моделирования экономических систем; • основы математического анализа, необходимые для решения финансовых и экономических задач. Уметь: • применять математические методы для решения экономических задач; • использовать понятийный аппарат математического анализа как инструмент научного познания и анализа, для исследования математических моделей в экономике; • оперировать различными видами обобщений, включая образы, понятия, категории; • применять приемы и методы мышления (анализ и синтез, индукция и дедукция, обобщение и конкретизация, абстрагирование и аналогия), необходимые для интеллектуальной деятельности; • четко, логично, аргументированно строить доказательства, делать умозаключения и выводы; • работать с учебной и научной математической литературой; • развивать интеллектуальную самостоятельность и активность; • осуществлять интеллектуальное саморазвитие, самоусовершенствование; 4
Стр.4
• формировать позитивное отношение к умственному напряжению, преодолевать познавательные трудности; • осуществлять поиск, сбор и анализ информации, необходимой для решения поставленной экономической задачи; • осуществлять выбор соответствующего математического инструментария, необходимого для проведения расчетов и обработки полученных данных в соответствии с поставленной задачей; • анализировать результаты расчетов, обосновывать полученные выводы; • анализировать и содержательно интерпретировать полученные результаты; • прогнозировать на основе стандартных математических моделей развитие экономических процессов и явлений, представлять результаты аналитической и исследовательской работы в виде выступления, доклада, информационного обзора, аналитического отчета с использованием графиков, таблиц, диаграмм. Владеть: • математическими методами анализа количественных характеристик изучаемого объекта; • навыками аргументированного объяснения, доказательства; • приемами классификации, систематизации знаний на основе логического мышления; • языком математики, необходимым для изучения всех последующих дисциплин, для решения экономических задач; • понятийно-категориальным аппаратом математического анализа; • навыками применения современного математического инструментария для анализа полученных данных; • методикой построения, анализа и применения математических моделей для оценки состояния и прогноза развития экономических явлений и процессов (в части компетенций, соответствующих методам математического анализа); • креативными навыками самостоятельной познавательной деятельности; • умениями грамотно и эффективно пользоваться источниками информации, справочной литературы, ресурсами интернета. 5
Стр.5
СОДЕРЖАНИЕ Предисловие………………………………………………………………….. ГЛАВА 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ 1.1. Понятие матрицы………………………………………………………….. 3 6 1.2. Действия над матрицами…………………………………………………. 7 1.3. Определители……………………………………………………………… 10 1.4. Матричное решение систем линейных уравнений……………………… 12 1.5. Прямая на плоскости……………………………………………………… 13 ГЛАВА 2. ВВЕДЕНИЕ В АНАЛИЗ 2.1. Вещественные числа………………………………………………………. 18 2.1.1. Множества. Операции над множествами……………………… 2.1.2 Метод математической индукции………………………………… 18 19 2.1.3. Верхняя и нижняя грани числового множества………………… 19 2.1.4. Абсолютная величина числа……………………………………… 20 2.2. Теория последовательностей……………………………………………. 21 2.2.1. Предел последовательности………………………………………… 21 2.2.2. Бесконечно малые и бесконечно большие последовательности…. 22 2.2.3. Свойства сходящихся последовательностей………………………. 23 2.2.4. Монотонные последовательности………………………………… 23 2.2.5. Предельные точки………………………………………………….. 2.2.6. Фундаментальные последовательности. Критерий Коши сходи24 мости последовательности…………………………………………………… 25 ГЛАВА 3. ПРЕДЕЛ ФУНКЦИИ. НЕПРЕРЫВНОСТЬ ФУНКЦИИ 3.1. Предел функции. Теоремы о пределах…………………………………. 26 3.2. Вычисление пределов……………………………………………………. 27 3.3. Первый замечательный предел и раскрытие неопределенности типа 0 ………………………………………………………… 30 3.4. Второй замечательный предел и раскрытие неопределенности типа 1 ……………………………………………………………. 30 3.5. Непрерывность функции…………………………………………………. 31 3.6. Сравнение бесконечно малых функций…………………………………. 32 3.7. Вычисление пределов функций с помощью асимптотических формул... 33 ГЛАВА 4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 4.1. Производная функции. Правила дифференцирования………………… 36 4.2. Производная сложной функции. Логарифмическая производная…….. 36 4.3. Производная обратной функции, неявной функции и функции, заданной параметрически…………………………………………………………… 37 4.4. Дифференциал функции………………………………………………… 38 40 4.5. Производные и дифференциалы высших порядков……………………. 39 4.6. Теоремы о среднем……………………………………………………….. 4.7. Правила Лопиталя…………………………………………………………. 41 4.8. Формула Тейлора…………………………………………………………. 42
Стр.176
ГЛАВА 5. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 5.1. Первообразная функция. Неопределенный интеграл…………………… 44 5.2. Методы интегрирования…………………………………………………. 44 5.3. Определенный интеграл………………………………………………….. 5.4. Вычисление определенного интеграла…………………………………. 46 48 ГЛАВА 6. ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 6.1. Постановка задачи математического и линейного программирования… 50 6.2. Геометрический метод решения задач линейного программирования… 54 6.3. Симплекс-метод для решения задач линейного программирования….. 6.4. Симплекс-таблицы для решения ЗЛП…………………………………….. 6.5. Метод искусственного базиса (М-метод)………………………………. 58 65 70 ГЛАВА 7. ПРИМЕРЫ РЕШЕНИЯ КОНТРОЛЬНЫХ РАБОТ 7.1. Пример решения контрольной работы по теме «Матрицы и определители»…………………………………………………………………… 7.2. Пример решения контрольной работы по теме «Системы линейных уравнений»…………………………………………………………………… 7.3. Пример решения контрольной работы по теме «Линейная алгебра»…. 73 75 77 7.4. Пример решения контрольной работы по теме «Векторная алгебра»… 80 7.5. Пример решения контрольной работы по теме «Введение в анализ»… 81 7.6. Пример решения контрольной работы по теме «Дифференциальное исчисление функции одной переменной»…………………………………… 82 7.7. Пример решения контрольной работы по теме «Интегральное исчисление функции одной переменной»………………………………………….. 7.8. Пример решения контрольной работы по теме «Дифференциальное исчисление функции нескольких переменных»……………………………. 85 88 7.9. Пример решения контрольной работы по теме «Интегральное исчисление функции нескольких переменных»……………………………………. 90 7.10. Пример решения контрольной работы по теме «Ряды»……………… 91 7.11. Пример решения контрольной работы по теме «Дифференциальные уравнения»…………………………………………………………………….. 7.12. Пример решения контрольной работы по теме «Теория вероятностей и математическая статистика»…………………………………………….. 7.13. Пример решения контрольной работы по теме «Линейное программирование»……………………………………………………………... 94 98 101 ГЛАВА 8. КОНТРОЛЬНЫЕ РАБОТЫ 8.1. Контрольная работа по теме «Матрицы и определители»……………… 103 8.2. Контрольная работа по теме «Системы линейных уравнений»……….. 108 117 119 122 8.3. Контрольная работа по теме «Линейная алгебра»……………………… 114 8.4. Контрольная работа по теме «Векторная алгебра»…………………….. 8.5. Контрольная работа по теме «Аналитическая геометрия»…………….. 8.6. Контрольная работа по теме «Введение в анализ»…………………….. 8.7. Контрольная работа по теме «Дифференциальное исчисление функции одной переменной»……………………………………………………………. 127 8.8. Контрольная работа по теме «Интегральное исчисление функции одной переменной»………………………………………………………………. 135 8.9. Контрольная работа по теме «Дифференциальное исчисление функции нескольких переменных»…………………………………………………….. 140
Стр.177
8.10. Контрольная работа по теме «Интегральное исчисление функции нескольких переменных»……………………………………………………… 142 8.11. Контрольная работа по теме «Ряды»…………………………………… 146 8.12. Контрольная работа по теме «Дифференциальные уравнения»……… 148 8.13. Контрольная работа по теме «Теория вероятностей и математическая статистика»……………………………………………………………………. 153 8.14. Контрольная работа по теме «Линейное программирование»……….. Библиографический список…………………………………………………… 175 159
Стр.178