Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 634757)
Контекстум
.
Инженерный журнал: наука и инновации

Инженерный журнал: наука и инновации №12 2020 (200,00 руб.)

0   0
Страниц122
ID668687
Аннотация«Инженерный журнал: наука и инновации» – научно-практическое издание, в котором публикуются оригинальные (т. е. не опубликованные в других изданиях) статьи, содержащие результаты научных исследований по всем разделам, заявленным в рубрикаторе. Выбор электронной формы издания был обусловлен необходимостью оперативного введения в научный оборот результатов научных исследований, что соответствует тенденции сделать оплаченные государством результаты научного труда общественным достоянием. Это же предполагает выбор редакцией журнала свободного доступа к его контенту.
Кому рекомендованоЖурнал предназначен для научных работников всех рангов, инженеров, практических работников, молодых ученых и аспирантов.
Инженерный журнал: наука и инновации .— Москва : Изд-во МГТУ им. Н.Э. Баумана, 2012 .— 2020 .— №12 .— 122 с. : ил. — URL: https://rucont.ru/efd/668687 (дата обращения: 25.04.2024)

Предпросмотр (выдержки из произведения)

Инженерный_журнал_наука_и_инновации_№12_2020.pdf
УДК 536.24 DOI: 10.18698/2308-6033-2020-12-2036 Тепловой расчет погружных электродвигателей © Р.Р. Гизатуллин1, С.Н. Пещеренко1, А.В. Шиверский2 1Пермский национальный исследовательский политехнический университет, г. Пермь, 614990, Россия 2АО «Новомет-Пермь», г. Пермь, 614065, Россия Предложена методика теплового расчета погружных электродвигателей (ПЭД), предназначенная для использования на стадии их концептуального проектирования. В основе модели лежит полная система уравнений гидродинамики, осредненных по поперечному сечению ПЭД и кольцевого канала, по которому прокачивается охлаждающая жидкость. Задаются все геометрические размеры и свойства вещества. Вычисляются распределение температуры по поперечному сечению и по длине электродвигателя. Использованы два приближения. В первом — распределение температуры в сечении электродвигателя осредняется по углам, для чего требуется задать эффективный коэффициент теплопроводности внутри пазов статора, заполненных проводами обмотки и электроизоляцией. При втором приближении теплопередачу на границе твердое тело — жидкость задавали через эмпирическую зависимость числа Нуссельта от чисел Рейнольдса и Прандтля. Для верификации модели полученные результаты сравнивали с расчетами методом вычислительной гидродинамики в программном комплексе ANSYS Fluent. Ошибка вычислений температуры изоляции была не более 5 %. Ключевые слова: погружной электродвигатель, тепловые расчеты, теплопередача, вычислительная гидродинамика, ANSYS. Введение. В настоящее время примерно 30 % отказов электроцентробежной погружной установки для добычи нефти происходит ввиду отказа погружных электродвигателей (ПЭД), происходящего в результате перегрева его электроизоляции [1–3], что указывает на недостаточную точность тепловых расчетов, выполняемых при проектировании. Существует большое количество методик тепловых расчетов погружных электродвигателей — как аналитических [4–8], так и численных [9–11]. Аналитические методики основаны на уравнениях теплопроводности, теплообмена, представляя ПЭД в упрощенном виде (в качестве цилиндра). Для задания тепловых потерь берутся суммарные потери, хотя они разные в каждой части (проводники, ротор, статор, корпус). В большинстве источников учитывается теплообмен между двигателем и охлаждающей жидкостью. Однако элементы ПЭД изготовляются из разных материалов (проводники — из меди, ротор и статор — из стали, пазы заполняют изоляционным материалом и т. д.), которые имеют разные теплофизические свойства, влияющие на передачу теплоты от проводников в паз, из паза — в статор, из статора — в корпус, из корпуса — в охлаждающую жидИнженерный журнал: наука и инновации # 12·2020 1
Стр.1
Р.Р. Гизатуллин, С.Н. Пещеренко, А.В. Шиверский кость. Поэтому необходимо учитывать теплообмен и между этими элементами ПЭД. Специализированное программное обеспечение, использующее методы численного моделирования [9–11], в большинстве случаев основано на уже имеющихся конструкциях и для проектирования новых двигателей не подходит. Методы вычислительной гидродинамики (Computational Fluid Dynamics, CFD) позволяют решать тепловые задачи для ПЭД в стационарной [12] и в нестационарной [13] постановке с достаточно высокой точностью. Правда, они весьма трудоемки. Требуется задавать полную 3D-модель ПЭД, строить подробную расчетную сетку, поэтому для реализации подобного расчета необходим высокопроизводительный компьютер. Обычно на выполнение такой работы затрачивается несколько суток, поскольку при проектировании ПЭД варьируют до десятка параметров, проводят десятки, а то и сотни миллионов расчетов, необходимых при поиске оптимальной конструкции. Поэтому применять трудоемкие CFD-методы на этапе создания нового двигателя невозможно. На основании изложенного выше цель представленной работы заключалась в разработке методики быстрого теплового расчета ПЭД для использования на стадии их концептуального проектирования. Методики расчета средствами вычислительной гидродинамики [14]. Поперечное сечение ПЭД представлено на рис. 1. Статор имеет пазы, в которых размещены провода статорной обмотки и электроизоляция. Ротор состоит из вала, сердечника, постоянных магнитов и гильзы. Взятая для расчета область содержала один паз статорной обмотки (рис. 2). На границах области задавали условия периодичности. Рис. 1. Поперечное сечение погружного электродвигателя: а — общий вид; б — сектор; 1 — корпус; 2 — лист статора; 3 — изоляция; 4 — проводники обмотки; 5 — зазор между статором и ротором (масло); 6 — гильза; 7 — магнит; 8 — сердечник; 9 — шпонка; 10 — вал; 11 — центральное отверстие вала (масло) 2 Инженерный журнал: наука и инновации # 12·2020
Стр.2
Тепловой расчет погружных электродвигателей Приняты следующие упрощения геометрии: тонкий зазор между корпусом и статором двигателя не учитывался, что позволило объединить их в одну область; элементы ротора (вал, магниты, шпонка, гильза, сердечник) также объединили в одну общую область с эффективными свойствами. Кольцевой канал между ротором и статором, а также центральный канал вала ротора заполнены маслом. Боковая поверхность корпуса ПЭД и нижний торец корпуса омываются скважинной жидкостью. Расчет течения и теплопередачи в жидкости проводился в RANS-приближении с использованием SST-модели турбулентности. Строили структурированную гексаэдрическую сетку со сгущением в пристеночных областях до y+ < 5 и числом элементов ~650 000 (см. рис. 2). В данной работе применили CFD-метод только для тестирования разрабатываемых быстрых методик теплового расчета. В расчетах приняты следующие граничные условия: на входе Рис. 2. CFD-методика: а — расчетная область; б — расчетная сетка; 1 — скважинная жидкость; 2 — статор; 3 — изоляция; 4 — масло; 5 — ротор; 6 — проводники; 7 — корпус Внутри расчетной области задавали объемные источники теплоты, в которых объемная плотность тепловыделения рассчитывается в соответствии с потерями мощности на каждом компоненте двигателя. Суммарные тепловые потери вычисляют согласно известной инженерной методике [15]: Nq = N(1 — η), где N — мощность электродвигателя; η — КПД электродвигателя. Тепловые потери складываются из потерь на внутреннее трение в жидкости Nж (в зазоре ротор — статор), трение в радиальных подшипниках Nп, нагрев проводников статорной обмотки NR (омические потери) и потерь на вихревые токи Nв (токи Фуко) в роторе и статоре. Задавали вращение ротора с частотой 6000 об/мин неподвижный и статор. Методом CFD был проведен расчет ПЭД-130, для верификации использовали результаты стендовых испытаний этого электродвигаИнженерный журнал: наука и инновации # 12·2020 3 в расчетную область задавали расход и температуру жидкости, на выходе из этой области принимали открытую границу и нулевое давление.
Стр.3

Облако ключевых слов *


* - вычисляется автоматически
.