УДК 621.391.63:004.056.52 ББК 32.86-5

P865

Печатается по решению кафедры информационной безопасности телекоммуникационных систем Института компьютерных технологий и информационной безопасности Южного федерального университета (протокол № 18 от 22 апреля 2021 г.)

Репензенты:

заведующий кафедрой «Информационная безопасность» Ордена Трудового Красного Знамени федерального государственного бюджетного образовательного учреждения высшего образования «Московский технический университет связи и информатики (МТУСИ)», заслуженный деятель науки РФ, доктор технических наук, профессор О. И. Шелухин

профессор кафедры «Управление и интеллектуальные технологии» Федерального государственного образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ», доктор технических наук, профессор Γ . Φ . Φ иларетов

Румянцев, К. Е.

Р865 Квантовые технологии в телекоммуникационных системах : учебник / К. Е. Румянцев ; Южный федеральный университет. — Ростовна-Дону ; Таганрог : Издательство Южного федерального университета, 2021. — 346 с.

ISBN 978-5-9275-3857-7

Изложены тенденции развития квантовых коммуникаций, вероятностные закономерности и основные понятия квантовой физики, раскрыты принципы квантовой криптографии, описаны направления развития и протоколы, типовые структуры и элементная база систем квантового распределения ключа и распределённых защищённых сетей на их основе. Освещены особенности функционирования систем квантового распределения ключа в условиях возможного несанкционированного доступа. Материал является основой для прослеживания технического уровня и тенденций развития систем квантового распределения ключа.

Учебник предназначается для студентов, обучающихся по специальности 10.05.02 Информационная безопасность телекоммуникационных систем.

УДК 621.391.63:004.056.52

ББК 32.86-5

ISBN 978-5-9275-3857-7

- © Южный федеральный университет, 2021
- © Румянцев К. Е., 2021
- © Оформление. Макет. Издательство Южного федерального университета, 2021

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ
СПИСОК СОКРАЩЕНИЙ ТЕРМИНОВ НА АНГЛИЙСКОМ ЯЗЫК
СПИСОК СОКРАЩЕНИЙ ТЕРМИНОВ НА РУССКОМ ЯЗЫКЕ
введение
ЧАСТЬ 1. ТЕНДЕНЦИИ РАЗВИТИЯ КВАНТОВЫХ
КОММУНИКАЦИЙ
1. ВНЕДРЕНИЕ КВАНТОВЫХ ТЕХНОЛОГИЙ В
ТЕЛЕКОММУНИКАЦИИ
1.1. Предпосылки внедрения квантовых коммуникаций
1.2. Идеи квантовой криптографии
Вопросы для самоконтроля усвоения материала
2. ТЕКУЩИЙ УРОВЕНЬ РАЗВИТИЯ ТЕХНОЛОГИЙ КВАНТОВО
КРИПТОГРАФИИ
2.1. Развитие технологий квантовой криптографии
2.2. Инфраструктура связи и квантовых коммуникаций
2.3. Развитие рынка квантовых коммуникаций
2.4. Постквантовая криптография
Вопросы для самоконтроля усвоения материала
ЧАСТЬ 2. ОСНОВЫ КВАНТОВОЙ ФИЗИКИ
3. ВЕРОЯТНОСТНЫЕ ЗАКОНОМЕРНОСТИ КВАНТОВОЙ
ФИЗИКИ
3.1. Носители информации в квантовой коммуникации
3.2. Принципы квантовой механики
3.3. Условие интерференции волн
3.4. Интерференция амплитуд вероятности переходов
3.5. Классический опыт по регистрации электрона в интерферо-
метре
3.6. Контроль поведения электрона в интерферометре
3.7. Суперпозиция состояний
3.8. Состояние двухуровневой квантово-механической системы
3.9. Парадокс «кота Шрёдингера»
3.10. Измерительный процесс в квантовой физике
3.11. Волновая функция

3.12. Основополагающие положения квантовой физики для кван-	
товой коммуникации	76
Вопросы для самоконтроля усвоения материала	79
4. ОСНОВНЫЕ ПОНЯТИЯ И ПРИНЦИПЫ КВАНТОВОЙ ФИЗИКИ	82
4.1. Единичный квантовый бит	82
4.2. Геометрическое представление кубита	84
4.3. Состояние кубита после измерения в стандартном базисе	85
4.4. Принцип неопределённости Гейзенберга	86
4.5. Особенности проявления принципа неопределённости при	
приёме фотона	89
Вопросы для самоконтроля усвоения материала	90
5. ОДНОКУБИТНЫЕ ПРЕОБРАЗОВАНИЯ	92
5.1. Преобразование Адамара	92
5.2. Волоконный ответвитель Х-типа	93
5.3. Разделительный волоконный ответвитель Ү-типа	97
5.4. Соединение двух волоконных ответвителей Х-типа	99
5.5. Интерферометр Маха – Цендера с фазовращателем	100
Вопросы для самоконтроля усвоения материала	102
6. КВАНТОВАЯ ТЕЛЕПОРТАЦИЯ	103
6.1. Парадокс Эйнштейна, Подольского и Розена	103
6.2. Сцепленные состояния	104
6.3. Сцепленные состояния между отдельными фотонами в ре-	
зультате спонтанного параметрического рассеяния излучения	107
6.4. Принципы квантовой телепортации	110
6.5. Неравенства Белла	111
6.6. Эксперимент с парой сцепленных фотонов	113
6.7. Процесс квантовой телепортации	119
6.8. Схема квантовой телепортации	121
6.9. Плотное кодирование	124
6.10. Вариант реализации протокола Е91	129
6.11. Волоконно-оптические системы квантового распределения	
ключа с помощью сцепленных состояний	132
Вопросы для самоконтроля усвоения материала	133
ЧАСТЬ 3. КВАНТОВАЯ КРИПТОГРАФИЯ	135
7 НАПРАВЛЕНИЯ ВАЗВИТИЯ УВАНТОВОЙ УВИПТОГВАЖИИ	136

7.1. Квантовая криптография на основе кодирования квантового
состояния одиночной частицы
7.2. Квантовая криптография на основе сцепленных состояний
7.3. Квантовое распределение ключа
7.4. Комплекс для передачи конфиденциальной информации с
квантовым распределением ключа
7.5. Инфраструктура информационной безопасности при кванто-
вом распределении ключа
Вопросы для самоконтроля усвоения материала
8. ПРОТОКОЛ ВВ84 ДВУХУРОВНЕВОЙ КВАНТОВОЙ СИСТЕМЫ
8.1. Теория кодирования состояний фотонов в протоколе ВВ84
8.2. Протокол ВВ84 с поляризационным кодированием состояний
фотонов
8.3. Протокол ВВ84 с фазовым кодированием состояний фото-
HOB
8.4. Протокол ВВ84 с временным кодированием состояний фото-
HOB
Вопросы для самоконтроля усвоения материала
9.1. Теория кодирования состояний фотонов в протоколе В92
9.2. Перспективы применения квантового распределения ключа
по протоколу В92
9.3. Протокол В92 с поляризационным кодированием состояний
фотонов
9.4. Протокол В92 с фазовым кодированием состояний фотонов 9.5. Протокол В92 с временным кодированием состояний
фотоновфотокол в делеменным кодированием состоянии
9.6. Контрольные задания
Вопросы для самоконтроля усвоения материала
ЧАСТЬ 4. ЭЛЕМЕНТНАЯ БАЗА КВАНТОВЫХ СИСТЕМ
ЧАСТЬ 4. ЭЛЕМЕНТНАЯ ВАЗА КВАНТОВЫХ СИСТЕМ ТЕЛЕКОММУНИКАЦИИ
10. АНАЛИЗ ТЕКУЩЕГО СОСТОЯНИЯ И ТЕНДЕНЦИИ
РАЗВИТИЯ ЭЛЕМЕНТНОЙ БАЗЫ КВАНТОВЫХ СИСТЕМ
ТЕЛЕКОММУНИКАЦИИ
10.1. Анализ элементной базы атмосферных систем квантового
распреления ключа
риупределения клио и

342

10.2. Анализ элементной базы волоконно-оптических систем
квантового распределения ключа
10.3. Анализ элементной базы спутниковых систем квантового
распределения ключа
10.4. Функциональные элементы систем квантового распределе-
ния ключа
Вопросы для самоконтроля усвоения материала
11. ОДНОФОТОННЫЕ ИСТОЧНИКИ ИЗЛУЧЕНИЯ
11.1. Источники одиночных фотонов
11.2. Специфика применения многофотонных лазеров
11.3. Поляризатор
11.4. Регулируемый волоконно-оптический аттенюатор
11.5. Спектральные свойства фотонов с однофотонного источни-
ка излучения
11.6. Требования к однофотонному источнику излучения
11.7. Расчётно-конструкторское задание
Вопросы для самоконтроля усвоения материала
12. ОДНОФОТОННЫЕ ПРИЁМНЫЕ ОПТИЧЕСКИЕ МОДУЛИ
12.1. Физические основы работы лавинных фотодиодов
12.2. Основные параметры лавинных фотодиодов
12.3. Цепи гашения однофотонных лавинных фотодиодов
12.4. Структура и параметры однофотонных приёмных оптиче-
ских модулей
Вопросы для самоконтроля усвоения материала
13. ОПТОЭЛЕКТРОННЫЕ И ОПТИЧЕСКИЕ ЭЛЕМЕНТЫ
13.1. Фазовый оптический модулятор
13.2. Контроллер поляризации
13.3. Вращатель плоскости поляризации
13.4. Волоконно-оптический разветвитель
13.5. Волоконно-оптическая линия задержки
13.6. Поляризационный объединитель/светоделитель
13.7. Оптический циркулятор
13.8. Зеркало Фарадея
13.9. Оптические фильтры
13.10. Задание на проектирование волоконно-оптической линии
залержки

Вопросы для самоконтроля усвоения материала	255
ЧАСТЬ 5. ФОРМИРОВАНИЕ КЛЮЧЕВОЙ	
ПОСЛЕДОВАТЕЛЬНОСТИ	257
14. ЭТАПЫ ФОРМИРОВАНИЯ КЛЮЧЕВОЙ	
ПОСЛЕДОВАТЕЛЬНОСТИ	258
14.1. Обобщённая структура коммерческих системы КРК с фазо-	
вым кодированием состояний фотона	259
14.2. Формирование сырой ключевой последовательности	265
14.3. Формирование просеянной ключевой последовательности	266
14.4. Формирование одобренной ключевой последовательности	268
14.5. Коррекция ошибок	269
14.6. Усиление секретности	271
Вопросы для самоконтроля усвоения материала	274
15. СКОРОСТЬ ФОРМИРОВАНИЯ КЛЮЧЕВОЙ	
ПОСЛЕДОВАТЕЛЬНОСТИ	275
15.1. Оценка снижения скорости формирования ключевой после-	
довательности бит на физическом уровне	275
15.2. Оценка снижения скорости формирования ключевой после-	
довательности бит на логическом уровне	279
15.3. Скорость формирования секретной ключевой последова-	
тельности	285
15.4. Расчётное задание	286
ЧАСТЬ 6. ПРОБЛЕМЫ КВАНТОВОЙ КОММУНИКАЦИИ	289
16. КВАНТОВАЯ СЕТЬ	290
16.1. Концепция квантовой сети	290
16.2. Технология квантового распределения ключей в сетях с	
древовидной архитектурой	292
16.3. Квантовая сеть на основе квантовых повторителей	293
Вопросы для самоконтроля усвоения материала	295
17. СРЕДА РАСПРЕДЕЛЕНИЯ КВАНТОВЫХ КЛЮЧЕЙ	296
17.1. Волоконно-оптические направляющие среды	296
17.2. Открытое пространство	308
17.3. Расчётно-конструкторское задание	310
17.4. Оценка временных характеристик волоконно-оптической	
пинии свази	311

17.5. Задание на расчёт принимаемой мощности оптического из-	
лучения в спутниковых системах связи	312
18. АТАКИ НА ВОЛОКОННО-ОПТИЧЕСКИЕ СИСТЕМЫ	
КВАНТОВОГО РАСПРЕДЕЛЕНИЯ КЛЮЧА	313
18.1. Стратегия съёма информации в квантовых системах	313
18.2. Атаки на систему квантового распределения ключа с двух-	
проводной волоконно-оптической линией связи	313
18.3. Атаки на систему квантового распределения ключа с одно-	
проводной волоконно-оптической линией связи	315
18.4. Роль процесса синхронизации в защите системы квантового	
распределения ключа от атак злоумышленника	316
18.5. Методы доступа к информации в волоконно-оптической ли-	
нии и принципы защиты автокомпенсационных систем квантово-	
го распределения ключа от несанкционированного доступа	318
18.6. Принцип вхождения в синхронизм, защищённый от несанк-	
ционированного доступа к информации	322
Вопросы для самоконтроля усвоения материала	323
ЗАКЛЮЧЕНИЕ	324
СПИСОК ЛИТЕРАТУРЫ	326

• • •