Ä

УДК 004.3'144:621.3.049.77(075.8) ББК 32.973.26-04я73-1 А19

Допущено учебно-методическим объединением вузов по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности 230101 «Вычислительные машины, комплексы, системы и сети».

Рецензент кандидат технических наук доцент филиала ГОУВПО «МЭИ (ТУ)» в г. Смоленске B.A. Курчавый

Аверченков, Олег Егорович.

А19 Интегральные операционные усилители и их применение: учебное пособие по курсу «Схемотехника ЭВМ» / О. Е. Аверченков. — 2-е изд., эл. — 1 файл pdf: 88 с. — Москва: ДМК Пресс, 2023. — Систем. требования: Adobe Reader XI либо Adobe Digital Editions 4.5; экран 10". — Текст: электронный.

ISBN 978-5-89818-363-9

Пособие предназначено для первоначального ознакомления со структурой и основными особенностями интегрального операционного усилителя (ИОУ). Изложены базовые сведения о схемотехнике входных и выходных цепей ИОУ. Приведены описания основных схем включения ИОУ, примеры типовых схем усилителей и порядок их практического расчета. Пособие можно использовать для самостоятельного изучения материала и при курсовом проектировании.

УДК 004.3'144:621.3.049.77(075.8) ББК 32.973.26-04я73-1

Электронное издание на основе печатного издания: Интегральные операционные усилители и их применение: учебное пособие по курсу «Схемотехника ЭВМ» / О. Е. Аверченков. — Москва: ДМК Пресс, 2012. — 87 с. — ISBN 978-5-94074-283-8. — Текст: непосредственный.

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но поскольку вероятность технических ошибок все равно существует, издательство не может гарантировать абсолютную точность и правильность приводимых сведений. В связи с этим издательство не несет ответственности за возможные ошибки, связанные с использованием книги.

В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации.

ISBN 978-5-89818-363-9

© Аверченков О. Е., 2012

© Оформление, ДМК Пресс, 2012

СОДЕРЖАНИЕ

Вв	едение	6
4	Основы схемотехники ИОУ	7
L	1.1. Обратная связь в усилителях	
	1.1.1. Общие сведения об усилителях	
	1.1.2. Разновидности обратной связи	10
	1.1.3. Коэффициент усиления для положительной ОС	11
	1.1.4. Коэффициент усиления для отрицательной ОС	12
	1.1.5. Общие свойства отрицательной ОС	
	1.1.6. Самовозбуждение усилителя	13
	1.1.7. Методы срыва генерации	
	1.1.8. Основные требования к усилительным каскадам	
	1.2. Параметры усилительного каскада	16
	1.2.1. Схемы включения транзисторов	
	1.2.2. Эквивалентная схема усилительного каскада с ОЭ	17
	1.2.3. Входное сопротивление схемы с ОЭ	18
	1.2.4. Коэффициент усиления напряжения для схемы с ОЭ	18
	1.2.5. Выходное сопротивление схемы с ОЭ	
	1.2.6. Схема и входное сопротивление эмиттерного повторителя	
	1.2.7. Коэффициент усиления эмиттерного повторителя	
	1.2.8. Выходное сопротивление эмиттерного повторителя	21
	1.3. Простейшие УПТ	
	1.3.1. УПТ на одном транзисторе	22
	1.3.2. Дрейф нулевого уровня УПТ	
	1.3.3. Усилительный каскад с термокомпенсацией	
	1.3.4. Дифференциальный каскад	
	1.4. Структура и параметры ИОУ	
	1.4.1. Описание иллюстративной схемы ИОУ	
	1.4.2. Условное графическое обозначение (УГО)	
	1.4.3. Параметры входной цепи	
	1.4.4. Параметры выходной цепи	
	1.4.5. Передаточные параметры	
	1.4.6. Частотные и временные параметры	
	1.4.7. Типы ИОУ	32
า	Основные схемы включения ИОУ	33
<u> </u>	У Основные схемы включения РЮУ 2.1. Неинвертирующий УПТ с последовательной ООС	34
	2.1.1. Схема	34
	2.1.2. Коэффициент усиления	
	2.1.3. Входное сопротивление	
	2.1.4. Главные особенности неинвертирующего УПТ	
	2.1.5. Порядок расчета	
	2.1.6. Числовой пример расчета	
	r r	

Ä

	2.2. Инвертирующий УПТ с параллельной ООС	38
	2.2.1. Схема	38
	2.2.2. Коэффициент усиления	39
	2.2.3. Входное сопротивление	
	2.2.4. Зависимость коэффициента β от сопротивления $R_{\text{иоу}}$	
	2.2.5. Главные особенности инвертирующего УПТ	
	2.2.6. Порядок простейшего расчета	
	2.2.7. Числовой пример расчета	
	2.3. Погрешности УПТ	
	2.3.1. Общие сведения	
	2.3.2. Потенциальная аддитивная составляющая	
	2.3.3. Токовая аддитивная составляющая	
	2.3.4. Оценка аддитивной погрешности	
	2.3.5. Мультипликативная погрешность	
2	Примеры использования УПТ	50
U	3.1. Использование инвертирующего УПТ	
	3.1.1. Инвертирующий сумматор напряжений	
	3.1.2. Интегратор	
	3.1.3. Преобразователь фототока в напряжение	
	3.1.4. Устранение неинформационного смещения	
	3.2. Использование неинвертирующего УПТ	
	3.2.1. Повторитель напряжения	
	3.2.2. Неинвертирующий сумматор напряжений	
	3.2.3. Усилитель с программируемым усилением	
	3.3. Дифференциальный УПТ с обратной связью	
	3.3.1. Усилитель разности однополярных напряжений	
	3.3.2. Усилитель разности с повышенным входным сопротивлением	
	3.3.3. Усилитель разности с повышенным коэффициентом усиления.	
	3.3.4. Измерительный усилитель разности	62
	3.4. Усилитель с мощным выходным каскадом	
	3.4.1. Общие сведения	
	3.4.2. Эмиттерный повторитель в режиме А	63
	3.4.3. Двухтактный эмиттерный повторитель в режиме В	65
	3.4.4. Выбор типа транзисторов выходного каскада	
	3.4.5. Достоинства и недостатки режима В	
	3.4.6. Усилитель с мощным выходным каскадом	
	3.4.7. Защита выходных транзисторов	68
	3.4.8. Мощный каскад режима D	69
	3.5. Усилители переменного напряжения	71
	3.5.1. Расчет разделительного конденсатора	
	3.5.2. Инвертирующий УНЧ	71
	3.5.3. Порядок расчета инвертирующего УНЧ	73
	3.5.4. Неинвертирующий УНЧ	73
	3.5.5. Неинвертирующий УНЧ с раздельной ООС по переменному	
	и постоянному токам	75

СОДЕРЖАНИЕ 5

Ä

3.5.6. Неинвертирующий УНЧ с повышенным входным	
сопротивлением	76
3.6. Однополярное питание усилителей	
3.6.1. Сдвиг информационной составляющей	
3.6.2. Учет сдвига при обработке	79
3.6.3. Инвертирующий УНЧ с однополярным питанием	80
3.6.4. Свойства ИОУ при однополярном включении	
3.6.5. Получение отрицательного напряжения из импульсов	83
Список используемых сокращений	85
Литература	86

Ä