МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ГЕОХИМИЧЕСКИЕ МЕТОДЫ ПОИСКОВ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Методические рекомендации для выполнения лабораторных работ

Составитель: Т.Н. Полякова

Воронеж Издательский дом ВГУ 2015

Содержание

Введение	4
Цели и задачи интерпретации, оценки и разбраковки	
геохимических аномалий	5
І. ИНТЕРПРЕТАЦИЯ ГЕОХИМИЧЕСКИХ АНОМАЛИЙ	7
Тема. 1. Определение статистических параметров геохимического	
поля. Выделение геохимических аномалий	7
Тема 2. Сравнение двух объектов по средним и дисперсиям	14
Тема 3. Оценка качества геохимической съемки	
II. ОЦЕНКА ГЕОХИМИЧЕСКИХ АНОМАЛИЙ	20
Тема 4. Составление рядов зонального отложения химических	
элементов	20
Тема 5. Графическое изображение результатов литохимических	
поисков по первичным и вторичным ореолам.	
Определение параметров геохимических аномалий	23
Тема 6. Количественная обработка данных литохимических поисков	
по потокам рассеяния	28
III. РАЗБРАКОВКА ГЕОХИМИЧЕСКИХ АНОМАЛИЙ	34
Тема 7. Оценка прогнозных ресурсов по геохимическим данным.	
Основные термины и понятия	37
Библиографический список	
Приложение 1. Значения F-критерия Фишера для уровня	
значимости P = 0,05	40
Приложение 2. Значения t-критерия Стьюдента при уровне	
значимости $P = 0.05$ (двухсторонний)	41

Ä

лии путем вычисления нижней аномальной границы. На третьем этапе исследуются параметры геохимической аномалии (геометрические размеры, элементный состав, средние характеристики содержаний элементов, их корреляционные связи, зональность, продуктивность, формационную принадлежность и др.) и определяется ее природа (рудная, ландшафтная, техногенная и т.д.), на четвертом этапе производится оценка прогнозных ресурсов по геохимическим данным, на пятом — выполняется разбраковка геохимических аномалий по степени перспективности и очередности их дальнейшего изучения.

І. ИНТЕРПРЕТАЦИЯ ГЕОХИМИЧЕСКИХ АНОМАЛИЙ

Тема. 1. Определение статистических параметров геохимического поля.

Выделение геохимических аномалий

Оценка уровня геохимического фона. Выделение геохимических аномалий пришло в поисковую геохимию из практики интерпретации геофизических полей, где неоднородность структуры поля оценивается по отношению к фону.

Геохимический фон (C_{ϕ}) представляет собой среднее содержание химического элемента в пределах нормального геохимического поля. Для его оценки выбирается та часть площади выполненной геохимической съемки, где выдержаны ландшафтно-геохимические условия, однотипны по химизму горные породы и отсутствуют явные аномалии. Способы оценки геохимического фона зависят от математического закона, которому подчиняется распределение содержаний элементов в выборке (нормальному или логнормальному).

Для макроэлементов (породообразующих) характерно нормальное распределение, когда изменение содержаний от точки к точке определяется соизмеримым и независимым влиянием большого числа факторов (геологических, геохимических, биоклиматических и др.). В этом случае график функции распределения, получивший название кривой Гаусса, будет иметь колоколообразную форму с одним максимумом в точке m и симметрией относительно прямой x = m (рис. 1). Величина m для нормального закона равна среднему арифметическому, в то же время она отвечает наиболее часто встречающемуся значению величины x, или ее моде, и совпадает с медианой — значением, делящим всю совокупность данных пополам. В связи с этим при нормальном распределении уровень геохимического фона (C_{ϕ}) представляет собой среднее арифметическое, наиболее часто встречающееся (модальное) и медианное содержание элемента в пределах однородного участка.

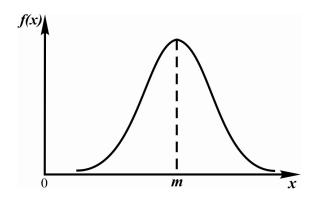


Рис. 1. График функции нормального распределения (кривая Гаусса)

В отличие от макроэлементов, для рудных компонентов распределение содержаний чаще всего не столь упорядочено, и график функции распределения отличается некоторой асимметрией. Однако после перевода содержаний элементов в десятичные логарифмы он снова будет соответствовать кривой Гаусса, и в этом случае говорят о логнормальном законе распределения. Геохимический фон (C_{ϕ}) для такого распределения содержаний будет равен величине антилогарифма от среднего арифметического десятичных логарифмов содержаний элемента в выборке.

Таким образом, при нормальном законе распределения уровень фона определяется по формуле 1.1:

$$C\phi = \frac{\sum_{i=1}^{n} C_i}{n},\tag{1.1}$$

при логнормальном – по формуле 1.2:

$$C_{\phi} = ant \lg \frac{\sum_{i=1}^{n} \lg C_{i}}{n}, \qquad (1.2)$$

где n – количество проб в выборке, C_i – содержание элемента в пробе.

Задача определения математического закона, которому подчиняется то или иное распределение содержаний элементов в выборке, решается двумя методами. Первый из них (графический) заключается в построении гистограмм или кумулятивных кривых распределения частот встречаемости содержаний элементов и позволяет высказывать гипотезу о виде распределения. Второй метод (математический) дает возможность проверить эту гипотезу с помощью так называемых «критериев согласия» (критерий Пирсона и др.).

В практике интерпретации геохимических данных широкое применение получил достаточно простой и наглядный метод построения гистограмм. Он заключается в определении математического закона по форме гистограммы распределения частоты встречаемости содержаний элементов. Симметричная форма, когда максимальная частота встречаемости расположена в середине и постепенно снижается к обоим концам, характерна для нормального закона распределения, асимметричная — для логнормального (рис. 2).