A

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ЦЕПИ

Учебное пособие для вузов

Составители: А.Н. Ларионов, В.В. Чернышёв, Н.Н. Ларионова

Издательско-полиграфический центр Воронежского государственного университета 2009

• • • • • • •

СОДЕРЖАНИЕ

1. Электростатика	4
1.1. Электростатическое поле в вакууме. Теорема	
Остроградского-Гаусса	4
1.2. Потенциал. Разность потенциалов. Проводники	
в электрическом поле	10
1.3. Диэлектрики в электрическом поле. Уравнения Пуассона	
и Лапласа	19
2. Постоянный ток	
2.1. Законы постоянного тока	
2.2. Работа и мощность постоянного тока	
2.3. Электропроводность различных сред	
2.4. Расчет эквивалентного сопротивления. Обобщенный закон	
Потенциальная диаграмма	
2.5. Простые электрические цепи. Прямая задача	
2.6. Простые электрические цепи. Обратная задача. Метод	
подобия	61
2.7. Метод токов в ветвях	
2.8. Метод контурных токов	
2.9. Метод узловых потенциалов	
3. Магнитные цепи постоянного тока	
3.1. Прямая и обратная задача	
4. Электромагнетизм.	
4.1. Магнитное поле в вакууме	
4.2. Электромагнитная индукция	
4.3. Магнитное поле в веществе. Энергия магнитного поля	
5. Электромагнитные колебания	
5.1. Колебательный контур	
Ответы	
Литература	136

вой линии от заряда q_1 , так как заряд $q_1>0$; вектор $\overrightarrow{E_2}$ направлен также по силовой линии, но к заряду q_2 , так как $q_2<0$.

Вектор $\overrightarrow{E_1}$ (см. рис.) направлен по силовой линии от заряда q_1 , так как заряд $q_1>0$; вектор $\overrightarrow{E_2}$ направлен также по силовой линии, но к заряду q_2 , так как $q_2<0$.

Подставив выражения (3) в формулу (1) и вынося общий множитель $1/(4\pi\varepsilon_0)$ за знак корня, получим:

$$E = \frac{1}{4\pi\varepsilon_0} \sqrt{\frac{q_1^2}{r_1^4} + \frac{q_2^2}{r_2^4} + 2\frac{|q_1||q_2|}{r_1^2 r_2^2} cos\alpha}$$

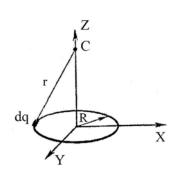
Подставив численные значения, получим искомую величину: E = 16,7 кВ/м.

Ответ: Напряженность электростатического поля в данной точке E = 16,7 кB/м.

Пример 1.1.2. Положительный заряд q равномерно распределен по тонкому проволочному кольцу радиуса R. Определить напряженность поля и потенциал в точке C, лежащей на оси кольца на расстоянии z от его центра. Изменятся ли эти величины, если нарушить равномерное распределение заряда по кольцу?

Дано:	Решение
q R	Поле задано зарядом, распределенным по тонкому кольцу.
	Даже при равномерном распределении заряда нельзя указать точ-
Z	ную конфигурацию силовых линий. Поэтому для расчета напря-
E-?	женности и потенциала можно воспользоваться принципом супер-
φ – ?	позиций.

Разобьем кольцо на элементарные участки. Каждый такой участок можно принять за точечный заряд dq. Потенциал созданного им поля:


$$\varphi = \frac{dq}{4\pi\varepsilon_0 r},\tag{1}$$

где r – расстояние от элемента dq до точки C.

Потенциал результирующего поля получим, проинтегрировав выражение (1):

$$\varphi = \int \frac{dq}{4\pi\varepsilon_0} r \,. \tag{2}$$

При переходе от одного элемента кольца к другому $r = \sqrt{R^2 + z^2}$ не изменяется и выражение (2) можно преобразовать:

$$\varphi_C = \frac{1}{4\pi\varepsilon_0 \sqrt{R^2 + z^2}} \int_0^q dq$$

Следовательно, в точках, лежащих на оси кольца, потенциал

$$\varphi_C = \frac{q}{4\pi\varepsilon_0 \sqrt{R^2 + z^2}}.$$
 (3)

Проекция вектора напряженности на ось OZ:

$$E_z = -\frac{\partial \varphi}{\partial z} = \frac{qz}{4\pi\varepsilon_0 \left(R^2 + z^2\right)^{3/2}} \tag{4}$$

При равномерном распределении заряда, т.к. $E_{\chi}=E_{y}=0$, следует, что вектор \overrightarrow{E} направлен вдоль оси OZ, т.е. $\overrightarrow{E}=E_{Z}\cdot\overrightarrow{k}$. При z>0, если заряд положительный, то $E_{Z}>0$ и вектор \overrightarrow{E} направлен по оси OZ вверх. В области z<0, то $E_{Z}<0$ и вектор \overrightarrow{E} направлен по оси OZ вниз.

При неравномерном распределении заряда по кольцу выражения (3) и (4) не изменятся, но E_{χ} и E_{y} не равны нулю и будут существенно зависеть от характера распределения заряда. При этом, чтобы найти E_{χ} и E_{y} в точках, лежащих на оси ОZ, необходимо определить потенциал в произвольной точке пространства ($x \neq 0$, $y \neq 0$), затем продифференцировав, получить выражения для E_{χ} и E_{y} и только после этого подставить значения $x \neq 0$, $y \neq 0$.

Otbet:
$$\varphi_C = \frac{q}{4\pi\varepsilon_0\sqrt{R^2+z^2}}; \quad E_z = \frac{qz}{4\pi\varepsilon_0\left(R^2+z^2\right)^{3/2}}.$$

При нарушении равномерного распределения заряда потенциал точки С останется прежним, напряженность изменится.

Задачи для самостоятельного решения

- **1.1.1.** Найти силу притяжения между ядром атома водорода и электроном.
- **1.1.2.** Заряд $q = -3,3\cdot10^{-8}$ Кл равномерно распределен по сферической поверхности. Какую скорость нужно сообщить точечному заряду, удельный заряд которого равен $3,3\cdot10^{-4}$ Кл/кг, в направлении, перпендикулярном прямой, соединяющей центр сферической поверхности с точечным зарядом, чтобы он начал вращаться по окружности радиусом r = 10 см? Заряды находятся в вакууме. Радиус сферической поверхности меньше r.
- **1.1.3.** Два точечных положительных заряда q_1 и q_2 помещены на расстоянии l друг от друга. Где надо поместить третий точечный заряд, и каким он должен быть, чтобы все три заряда оказались в равновесии?

- **1.1.4.** Три одинаковых положительных заряда 10⁻⁹ Кл каждый расположены по вершинам равностороннего треугольника. Какой отрицательный заряд нужно поместить в центре треугольника, чтобы сила притяжения с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?
- **1.1.5.** Два шарика весом по $2 \cdot 10^{-2}$ Н каждый подвешены в воздухе на тонких шелковых нитях длиной 2 м. Шарикам сообщают одноименные заряды $5 \cdot 10^{-8}$ Кл. Определить расстояние между центрами шариков.
- **1.1.6.** Два шарика массой по 1,5 г каждый подвешиваются в одной точке на шелковых нитях. После получения одинакового по величине и знаку зарядов они разошлись на расстояние 10 см и нити образовали угол 36°. Считая заряд отрицательным, определить его величину и количество электронов, полученных каждым шариком.
- **1.1.7.** Тонкий прямой стержень длиной l=15 см равномерно заряжен с линейной плотностью $\tau=0,10$ мКл/м. На продолжении оси стержня на расстоянии a=10 см от ближайшего конца находится точечный заряд $q_0=10$ нКл. Определить силу взаимодействия стержня и заряда.
- **1.1.8.** Два одинаковых положительных точечных заряда $q_1 = q_2 = q$ находятся на расстоянии 2l = 10 см друг от друга. На прямой, являющейся осью симметрии этих зарядов, найти точку, в которой напряженность электрического поля имеет максимум.
- **1.1.9.** Тонкий стержень длиной 2l равномерно заряжен с линейной плотностью τ . Определить напряженность электрического поля в точке, лежащей против середины стержня на расстоянии a от него.
- **1.1.10.** Очень длинная нить равномерно заряжена с линейной плотностью τ . Определить напряженность поля в точке, лежащей против конца нити на расстоянии a от нее.
- **1.1.11.** Электрическое поле создано двумя параллельными бесконечными плоскостями с поверхностными плотностями зарядов $\sigma_1 = 0,4$ мКл/м² и $\sigma_2 = 0,1$ мКл/м². Определить напряженность электрического поля, созданного этими заряженными плоскостями.
- **1.1.12.** На пластинах плоского воздушного конденсатора находится заряд q = 10 нКл. Площадь каждой пластины конденсатора S = 100 см². Определить силу, с которой притягиваются пластины. Поле между пластинами считать однородным.
- **1.1.13.** Электрическое поле создано бесконечной плоскостью с поверхностной плотностью зарядов $\sigma = 100 \text{ нКл/м}^2$ и бесконечной прямой нитью, заряженной с линейной плотностью $\tau = 100 \text{ нКл/м}$. На расстоянии r = 10 см от нити находится точечный заряд q = 10 нКл. Определить силу, действующую на заряд и ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости.