Министерство образования и науки Российской Федерации ФГБОУ ВПО «Тульский государственный педагогический университет им. Л. Н. Толстого»

Ю. В. Бобылёв, А. И. Грибков, В. А. Панин, Р. В. Романов

Опорные конспекты по электромагнетизму

Учебное пособие

Тула Издательство ТГПУ им. Л. Н. Толстого 2015 ББК 22.33я73 Б72

Рецензенты:

доктор физико-математических наук, профессор *Ю. Ф. Головнёв* (Тульский государственный педагогический университет им. Л. Н. Толстого); доктор технических наук, профессор *В. В. Жигунов* (Тульский государственный университет)

Бобылёв, Ю. В.

Б72 Опорные конспекты по электромагнетизму: Учеб. пособие [Электронный ресурс] / Ю. В. Бобылёв, А. И. Грибков, В. А. Панин, Р. В. Романов.— Электрон. дан.— Тула: Изд-во Тул. гос. пед. ун-та им. Л. Н. Толстого, 2015.— 1 электрон. опт. диск (CD-ROM).— Систем. требования: Intel Celeron 1700 Mhz и выше, 128 Мб RAM, 300 Мб на винчестере, ОС Microsoft Windows XP, Vista; дисковод CD-ROM 2x и выше, SVGA 64 Мb; мышь.— Загл. с этикетки диска.— ISBN 978-5-87954-952-2

Настоящее учебное пособие представляет собой краткое содержание курса «Электричество и магнетизм» и содержит весь необходимый материал, соответствующий Государственному образовательному стандарту.

Издание предназначено главным образом для студентов, которые по тем или иным причинам не могут посещать или посещают нерегулярно аудиторные занятия и занимаются самообразованием, в том числе и при дистанционном обучении. Также необходимо при окончательной подготовке к экзаменам.

Практически без сокращений может быть позиционировано для студентов технических и естественнонаучных профилей и направлений.

ББК 22.33я73

ISBN 978-5-87954-952-2

© Ю.В.Бобылёв, А. И. Грибков, В. А. Панин, Р. В. Романов, 2015

© ТГПУ им. Л. Н. Толстого, 2015

СОДЕРЖАНИЕ

Предисловие	4
Введение	5
<i>Bonpoc 1</i> . Электрический заряд	6
Вопрос 2. Закон Кулона	9
Вопрос 3. Напряженность электрического поля	. 11
Вопрос 4. Теорема Гаусса	
Вопрос 5. Потенциал электрического поля	. 17
<i>Вопрос</i> 6. Потенциал и напряженность	. 21
Вопрос 7. Проводники в электрическом поле	. 24
Вопрос 8. Диэлектрики в электрическом поле	
<i>Bonpoc 9</i> . Электрическая емкость. Конденсаторы	. 28
Вопрос 10. Электростатическая энергия	. 31
Вопрос 11. Основные понятия и законы постоянного тока	
Вопрос 12. ЭДС. Электрические цепи	. 38
<i>Bonpoc 13</i> . Ток в металлах	. 41
<i>Bonpoc 14</i> . Ток в вакууме	. 44
Вопрос 15. Ток в газах	. 47
<i>Bonpoc 16</i> . Ток в электролитах	. 50
Вопрос 17. Характеристики магнитного поля	. 53
Bonpoc 18. Основные законы магнетизма	. 56
Bonpoc 19. Движение заряженных частиц в магнитном поле	. 59
Bonpoc 20. Электромагнитная индукция	. 61
<i>Вопрос 21</i> . Магнитные свойства вещества	. 64
Вопрос 22. Электромагнитные колебания	. 67
Вопрос 23. Вынужденные колебания. Резонанс	. 70
<i>Bonpoc 24</i> . Переменный ток	. 72
Вопрос 25. Электромагнитное поле	. 75
<i>Bonpoc</i> 26. Уравнения Максвелла	
<i>Bonpoc 27</i> . Электромагнитные волны	
Литература	

Предисловие

Более чем четвертьвековой опыт работы преподавания различных дисциплин, таких как «Электричество и магнетизм», «Электродинамика и основы СТО», «Электродинамика сплошных сред» и других, показал, что на «студенческом рынке» востребованы пособия разные по позиционированию, объёму, стилю оформления и т.д.

Во-первых, это достаточно полные, многостраничные, красочно оформленные печатные издания [1, 2], которые позволяют вдумчивому учащемуся глубоко разобраться в тех или иных вопросах учебного материала по отдельным разделам физики.

Во-вторых, более краткие материалы [3-5], предназначенные для группы специальностей или направлений, позволяющие получить общие представления о соответствующей области науки.

Конечно, полный курс должен сопровождаться сборником задач, желательно с подробными «пошаговыми» решениями [6].

Наконец, «сверхкраткие» материалы, с помощью которых можно быстро вспомнить или повторить материал.

К последним и относится настоящее пособие.

Визуальный ряд, состоящий из формул, рисунков и графиков, сопровождается лаконичными "телеграфными" текстовыми пояснениями. Язык пособия, вообще говоря, далёк от академического и максимально приближен к разговорному, как, собственно это и должно быть, поскольку материал представляет собой запись того, что студент может услышать и увидеть на лекции.

Использовано большое количество рисунков, которые сознательно сделаны схематичными и упрощёнными, что называется «от руки». Это позволяет легко их воспроизвести, например, при ответе на экзамене.

Издание изначально планировалось как электронное, поэтому часть рисунков достаточно маленькие, что в данном случае некритично, так как при чтении будут использоваться ноутбуки, планшеты, смартфоны и другие устройства с возможностью масштабирования.

Студенты часто используют, назовём ЭТО деликатно, «микроконспекты», содержание И качество которых исполнения лучшего. пособие отставляет желать Смеем надеяться, что ЭТО подготовлено лучше, и будет полезно не только студенту, но и начинающему преподавателю.

В целом материал соответствует минимуму, указанному в ГОС ВО и учебным планам по целым группам профилей и направлений.

В качестве основной использована Международная система единиц (СИ).

Авторы Тула, октябрь 2015

⁴ Опорные конспекты по электромагнетизму. Бобылев, Грибков, Панин, Романов

Введение

1. Электродинамика как наука

Электродинамика – наука, изучающая поведение электромагнитного поля, осуществляющего взаимодействие между электрическими зарядами.

Тесно связана с другими разделами: механикой, молекулярной физикой, оптикой, физикой атома.

Является основой для практических наук: электротехники, радиотехники, радиоастрономии и т.д.

2. Историческая справка

- Фалес Милетский;
- В. Гильберт;
- А.-М.Ампер;
- М.Фарадей;
- Д.-К.Максвелл;
- Р.Милликен;
- Г.Герц;

и др.

3. Теория дально - и близкодействия

Долгое время в физике господствовала теория дальнодействия, которая, опираясь на математические законы, описывала взаимодействие тел без указания механизма данного взаимодействия. Это связано с тем, что хорошо сформулированные законы Ньютона прекрасно описывали все механические явления, сами, при этом, не поддаваясь какому-либо объяснению. Механический подход распространился и на другие разделы физики (закон Кулона). Трудами Остроградского, Гаусса, Лапласа и т.д. эта теория приобрела законченный математический вид. Вместе с тем ученых беспокоил вопрос о том, как и с помощью чего передаётся взаимодействие. Фарадей ввёл понятие поля, которое и является переносчиком взаимодействия. Долгое время теории существовали равноправно, так как в квазистатических полях они приводят к одинаковым результатам.

После опытов Герца и Попова с быстропеременными полями вопрос был однозначно решен в пользу теории близкодействия.

Считается, что взаимодействие между зарядами осуществляется с помощью электромагнитного поля, которое распространяется в пространстве. В вакууме скорость распространения

 $c=299792458 \text{ m/c} \approx 3,00.10^8 \text{ m/c}.$

В средах скорость меньше.

Вопрос 1 Электрический заряд

1. Общие понятия

Электрический заряд — физическая величина, определяющая электромагнитное поле, посредством которого осуществляется взаимодействие между зарядами.

Несмотря на различные способы получения заряда, существует электричество только двух сортов: «+» и «-».

Существует мнение, что на самом деле это избыток или недостаток электричества одного сорта, а именно отрицательного.

В природе количество положительного электричества примерно равно количеству отрицательного.

2. Способы получения наэлектризованных тел

Касание (трение)	Электростатическая	Из любого источника
	индукция	ЭДС
эбонит шерсть	+ + +	Fa _{Ta} _{Pe,i,Ka}

3. Измерение заряда

Пробный заряд – это заряд, который не вносит искажений в существующее поле.

Пусть существует некоторое электрическое поле. В какую-то точку поля помещаем пробный заряд. Поле на него будет действовать с некоторой силой.

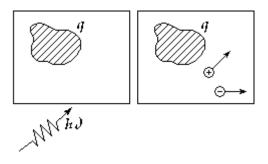
Вносим в это поле другой пробный заряд. Если силы направлены в одну сторону, то заряды одноименные, если в противоположную, то разноименные.

$$\frac{F_1}{|q_1|} = \frac{F_2}{|q_2|}$$

$$\frac{F_1}{F_2} = const = \frac{|q_1|}{|q_2|}$$

$$\vec{F}_2 = \vec{F}_2$$

Зная отношения сил, знаем и


отношение зарядов, а, приняв один из зарядов за эталон, указываем принципиальный способ измерения зарядов.

4. Единица заряда

1 кулон — единица СИ электрического заряда, равная заряду, протекающему через поперечное сечение проводника за 1 с при силе неизменяющегося тока 1 A.

5. Закон сохранения заряда

Если на замкнутую систему падает фотон с высокой энергией, то может возникнуть парный электрический заряд. В сумме заряд системы не изменится. Все эксперименты показывают, что заряду присуще свойство сохраняться, поэтому это положение возводится в ранг постулата.

В замкнутой системе электрический заряд есть величина постоянная.

$$\sum_{i=1}^{n} q_i = const.$$

6. Инвариантность заряда

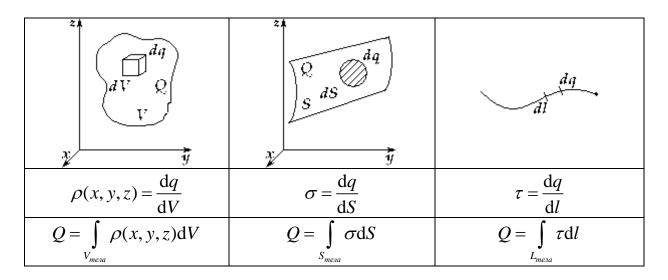
Принципиально заряды измеряются путем сравнения сил. Сила является инвариантом, т.е. она одинакова в разных системах отсчёта. Следовательно, отношение зарядов также инвариантно. А если и эталон заряда одинаков, то можно говорить, что заряд имеет одно и то же количественное значение в разных системах отсчета.

7. Дискретность заряда

Любой заряд можно представить в виде

$$q = N \cdot |e|, \quad N = 0, \pm 1, \pm 2, \dots$$

 $|e|=1,6021892(46)\cdot 10^{-19}$ Кл - элементарный заряд.

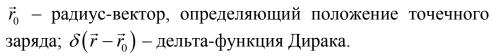

Электрический заряд дискретен или квантуется, т.е. существует некоторая минимальная порция заряда, которую дальше разделить нельзя (кварки не рассматриваем).

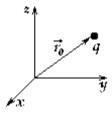
8. Модели заряженных тел

Считается, что заряд непрерывно «размазан» по телу, и вводятся понятия физически бесконечно малых заряда и объема.

$$V_{amoma} << dV << V_{meaa}; V_{amoma} = 10^{-27} \div 10^{-30} \,\text{M}^3; |e| << dq << Q_{meaa}$$

Также вводят понятия: объёмная плотность заряда — ρ , поверхностная плотность — σ , линейная плотность — τ .

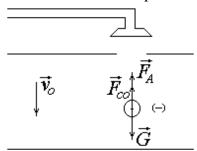



9. Точечный заряд

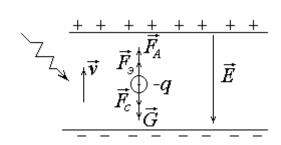
Точечным зарядом называется материальная точка, обладающая зарядом.

Плотность точечного заряда пишут в виде

$$\rho(\vec{r}) = q\delta(\vec{r} - \vec{r}_0),$$


10. Дельта функция или функция Дирака

Определение и основное свойство


$$\delta(x-x_0) = \begin{cases} 0, & x \neq x_0 \\ \infty, & x = x_0 \end{cases}, \quad \int_{-\infty}^{\infty} \delta(x-x_0) dx = 1, \quad \int_{-\infty}^{\infty} f(x) \delta(x-x_0) dx = f(x_0).$$

11. Опыт Милликена

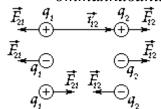
Частица в вязкой среде. Подаём напряжение. Освещаем светом.

8

$$G = F_A + F_{C_0}, F_3 + F_A = F_C + G, |q_1|E = k(v_1 + v_0),$$

$$mg = m_0 g + k v_0, |q|E + m_0 g = k v + m g, |q_2|E = k(v_2 + v_0),$$

$$(m - m_0)g = k v_0. |q|E = (m - m_0)g + k v. |\frac{q_1}{q_2}| = \frac{v_1 + v_0}{v_2 + v_0}.$$


Вопрос 2 Закон Кулона

1. Историческая справка

Открыт в 1771 году Кавендишем. Кулон открыл этот закон в 1785.

2. Формулировка

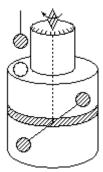
Сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними. Эта сила притяжения для разноименных зарядов и отталкивания – для одноименных зарядов.

в векторной форме

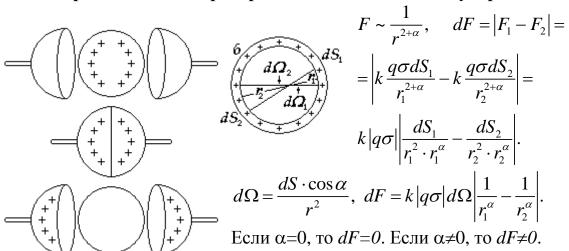
$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \cdot \frac{\vec{r}_{12}}{r_{12}}.$$

в скалярной форме

$$F_{12} = k \frac{|q_1 q_2|}{r_{12}^2}.$$


3. Проверка методом Кулона с помощью крутильных весов

Проверялась зависимость от квадрата расстояния и пропорциональность произведению зарядов.


$$F \sim \frac{1}{r^2},$$
$$F \sim a a$$

$$F \sim q_1 q_2$$
.

Единица заряда тогда ещё не была определена, поэтому проверка проводилась методом половинного деления заряда.

4. Экспериментальная проверка Кавендиша по методу Пристли

Максвелл: α <0,00005; 1971 год: α <10⁻¹⁶. Кавендиш: α<0,02;

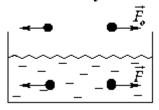
5. Проверка на больших и малых расстояниях

Данная проверка осуществляется косвенными методами. Известно, что если частица — переносчик взаимодействия имеет нулевую массу покоя, то сила взаимодействия обратно пропорциональна квадрату расстояния; если масса покоя не нуль, то сила ~ потенциалу Юкавы

$$F \sim \frac{d\varphi}{dr}, \qquad \varphi \sim \frac{1}{r} \exp(-\frac{r}{r_0}).$$

Задача сводится к определению массы покоя частиц — переносчиков. Для электромагнитного поля — это фотон. Его масса покоя не более 10^{-48} кг.

Опыты Резерфорда по рассеиванию α -частиц показали, что закон Кулона выполняется на атомных расстояниях. На ядерных расстояниях закон Кулона не работает.


6. Коэффициент пропорциональности

Зависит от системы единиц.

CU:
$$k = \frac{c^2}{10^7} \approx 9.0 \cdot 10^9 \frac{H \cdot \text{m}^2}{\text{K} \pi^2}, \quad k = \frac{1}{4\pi \varepsilon_0}, \quad \varepsilon_0 \approx 8.85 \cdot 10^{-12} \, \text{D/m}.$$

 ε_0 – электрическая постоянная.

7. Закон Кулона в средах

средах
$$\frac{F_0}{F} = const = \varepsilon \ge 1 -$$
 диэлектрическая

диэлектрическая проницаемость среды.

$$\vec{F}_{12} = k \frac{q_1 q_2}{\varepsilon r_{12}^3} \vec{r}_{12}.$$

вещество	${\cal E}$	
вакуум	1	
воздух	1,000594	
керосин	2	
титанат	1200	
бария	1200	

8. Принцип суперпозиции

Эксперименты показывают, что если некий заряд взаимодействует с другими, то сила, действующая на него, равна сумме сил, действующих со стороны каждого заряда в отдельности. В этом и заключается принцип суперпозиции или принцип независимости действия сил

$$\vec{F} = \sum_{i=1}^{N} \vec{F}_i .$$

Данное положение не доказывается, принимается за постулат и выполняется в очень широких пределах. Оно не выполняется на ядерных расстояниях и в очень сильных полях.