МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ ПЕРВОГО ПРЕЗИДЕНТА РОССИИ Б. Н. ЕЛЬЦИНА

КОЛЛОИДНАЯ ХИМИЯ

Примеры и задачи

Рекомендовано методическим советом УрФУ в качестве учебного пособия для студентов, обучающихся по программе бакалавриата по направлениям подготовки 18.03.01 «Химическая технология», 19.03.01 «Биотехнология», 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», 20.05.01 «Пожарная безопасность», 20.03.01 «Техносферная безопасность»

2-е издание, стереотипное

Москва
Издательство «ФЛИНТА»
Издательство Уральского университета
2017

Ä

УДК 544.7(075.8) К607

Авторы:

В. Ф. Марков, Т. А. Алексеева, Л. А. Брусницына, Л. Н. Маскаева

Рецензенты:

кафедра химической технологии древесины, биотехнологии и наноматериалов Уральского государственного лесотехнического университета (заведующий кафедрой кандидат технических наук, профессор Ю. Л. Юрьев);

М. Г. 3 у е в, доктор химических наук, профессор, главный научный сотрудник Института химии твердого тела УрО РАН

Научный редактор

В. Ф. Марков, доктор химических наук, профессор

Коллоидная химия: примеры и задачи [Электронный К607 ресурс]: [учеб. пособие] / [В. Ф. Марков, Т. А. Алексеева, Л. А. Брусницына, Л. Н. Маскаева; науч. ред. В. Ф. Марков]; М-во образования и науки Рос. Федерации, Урал. федер. ун-т. — 2-е изд., стер. — М.: ФЛИНТА: Изд-во Урал. ун-та, 2017. — 188 с.

ISBN 978-5-9765-3166-6 (ФЛИНТА) ISBN 978-5-7996-1435-5 (Изд-во Урал. ун-та)

В пособии изложены основные разделы коллоидной химии: количественные характеристики, образование, строение лиофильных и лиофобных дисперсных систем, их молекулярно-кинетические и оптические свойства, седиментационный анализ, адсорбция, смачивание, капиллярные и электрокинетические явления, кинетика коагуляции. Каждый раздел содержит основные теоретические положения, примеры решения типовых задач и задачи для самостоятельной проработки.

Пособие предназначено для студентов вузов.

УДК 544.7(075.8)

ISBN 978-5-9765-3166-6 (ФЛИНТА) ISBN 978-5-7996-1435-5 (Изд-во Урал. ун-та) © Уральский федеральный университет, 2015

ОГЛАВЛЕНИЕ

Предисловие	3
1. КОЛИЧЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ ДИСПЕРСНЫХ СИСТЕМ	5
1.1. Определение размера частиц и удельной поверхности	5
1.2. Методы получения дисперсных систем	6
Примеры решения задач	9
Задачи для самостоятельного решения	. 11
2. ТЕРМОДИНАМИКА МЕЖФАЗНОЙ ПОВЕРХНОСТИ	16
2.1. Природа поверхностной энергии. Поверхностное натяжение	16
2.2. Факторы, влияющие на поверхностное натяжение	17
Примеры решения задач	20
Задачи для самостоятельного решения	23
3. КИНЕТИЧЕСКИЕ СВОЙСТВА	
СВОБОДНО-ДИСПЕРСНЫХ СИСТЕМ	28
3.1. Броуновское движение	28
3.2. Диффузия	30
3.3. Осмос	30
3.4. Седиментация	32
3.4.1. Диффузионно-седиментационное равновесие	33
3.4.2. Основы седиментационного анализа	36
3.4.3. Построение интегральных и дифференциальных	
кривых распределения частиц по размерам	38
Примеры решения задач	41
Задачи для самостоятельного решения	48
4. СВОЙСТВА НАНОДИСПЕРСНЫХ СИСТЕМ	58
4.1. Влияние дисперсности на реакционную способность	59
4.2. Влияние дисперсности на растворимость вещества	
4.3. Влияние дисперсности на равновесие химической реакции	
4.4. Влияние дисперсности на температуру фазовых переходов	

4.5. Влияние дисперсности на переохлаждение	
при кристаллизации	62
4.6. Влияние дисперсности на механические свойства	63
Примеры решения задач	64
Задачи для самостоятельного решения	70
5. СВОЙСТВА ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ	74
5.1. Характеристика поверхностно-активных веществ	74
5.2. Мицеллообразование в растворах	
поверхностно-активных веществ	77
5.3. Методы определения критической концентрации	
мицеллообразования	
Примеры решения задач	81
Задачи для самостоятельного решения	83
6. АДСОРБЦИЯ	87
6.1. Классификация адсорбционных процессов	88
6.2. Изотермы адсорбции	88
6.3. Фундаментальное адсорбционное уравнение Гиббса	89
6.4. Теории адсорбции	90
6.4.1. Уравнение Генри	90
6.4.2. Теория мономолекулярной адсорбции Ленгмюра	92
6.4.3. Адсорбционное уравнение Фрейндлиха	94
6.4.4. Теория полимолекулярной адсорбции БЭТ	
6.5. Адсорбенты и их свойства	98
Примеры решения задач	100
Задачи для самостоятельного решения	106
7. КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ, АДГЕЗИЯ,	
СМАЧИВАНИЕ, РАСТЕКАНИЕ	116
7.1. Капиллярное поднятие. Формула Жюрена	116
7.2. Адгезия	118
7.3. Смачивание	121
7.3.1. Понятие краевого угла или угла смачивания	
7.3.2. Связь работы адгезии с краевым углом	123
7.4. Растекание жилкости	124

Примеры решения задач	125
Задачи для самостоятельного решения	
8. КОАГУЛЯЦИЯ ЛИОФОБНЫХ ДИСПЕРСНЫХ СИСТЕМ	131
8.1. Характеристика процесса коагуляции	132
8.2. Кинетика коагуляции	134
Примеры решения задач	138
Задачи для самостоятельного решения	141
9. ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ	
И ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ	146
9.1. Понятие двойного электрического слоя	
и механизм его образования	146
9.2. Строение двойного электрического слоя	147
9.3. Понятие электрокинетического потенциала	150
9.4. Электрокинетические явления	151
Примеры решения задач	
Задачи для самостоятельного решения	
10. ОПТИЧЕСКИЕ СВОЙСТВА ДИСПЕРСИЙ	168
Примеры решения задач	
Задачи для самостоятельного решения	
Список рекомендуемой литературы	183

. Ä