Рецензенты:

- В. Ю. Нейман, д. т. н., профессор, заведующий кафедрой «Теоретические основы электротехники» ФГБОУ ВО «Новосибирский государственный технический университет»;
- В. В. Харламов, д. т. н., профессор, заведующий кафедрой «Электрические машины и общая электротехника» ФГБОУ ВО «Омский государственный университет путей сообщения»

Татевосян, А. С.

Т23 Математическое моделирование магнитных полей и сил взаимодействия катушек с током и постоянных магнитов: монография / А. С. Татевосян, А. А. Татевосян, Б. И. Огорелков, Н. В. Захарова; Минобрнауки России, ОмГТУ. – Омск: Изд-во ОмГТУ, 2019. – 120 с.: ил.

ISBN 978-5-8149-2795-8

В монографии предложен системный подход и выработана концепция к анализу пространственного распределения трехмерных электромагнитных полей, приведены примеры расчета магнитных полей катушек с током, силовых взаимодействий в электроимпульсных системах, синхронных генераторах с высококоэрцитивными постоянными магнитами.

Предназначена для научных работников, аспирантов и магистрантов, занимающихся изучением и использованием на практике математических моделей электротехнических устройств, а также для студентов, обучающихся по электротехническим направлениям и специальностям.

УДК 621.318 ББК 31.2

Печатается по решению научно-технического совета Омского государственного технического университета. Протокол № 2 от 12.02.2019 г.

ISBN 978-5-8149-2795-8

© ОмГТУ, 2019

ОГЛАВЛЕНИЕ

Введение	5
1. Магнитное поле катушки с током	7
1.1. Магнитное поле круглого витка в его геометрическом центре	7
1.2. Магнитное поле кругового витка в точках по оси z	
1.3. Магнитное поле на оси плоского кольца	
1.4. Магнитное поле на оси равномерно намотанной спирали	11
1.5. Магнитное поле на оси соленоида	12
1.6. Магнитное поле на оси цилиндрической катушки конечных размеров	13
1.7. Векторный магнитный потенциал	
1.8. Векторный магнитный потенциал кругового контура с током	20
1.9. Индукция трехмерного магнитного поля кругового контура с током	25
1.10. Пример расчета магнитного поля кругового тока в системе MathCAD	34
1.11. Магнитное поле контура произвольной формы на большом расстоянии от контура	35
2. Моделирование электромагнитного поля промышленной частоты	40
при наличии экрана	
2.1. Электромагнитное экранирование поля	
2.2. Экспериментальное исследование и моделирование магнитного в экранированной области однослойными и многослойными экранами	
2.3. Моделирование электромагнитного поля при проникновении его внутрь стальных однослойных и многослойных экранов	51
3. Моделирование нестационарного магнитного поля индуктора и токопроводной пластины	55
3.1. Постановка связанной цепно-полевой задачи расчета	
нестационарного магнитного поля	55
3.2. Решение связанной цепно-полевой задачи для случая плоскопараллельной модели магнитного поля	

3.3. Решение связанной цепно-полевой задачи для случая	
осесимметричной модели магнитного поля6	9
3.4. Параметрический анализ повышения эффективности работы	
электроимпульсного устройства очистки7	2
3.5. Синтез схемы замещения электроимпульсного устройства7	5
4. Математическое моделирование магнитного поля и экспериментальное	
исследование синхронного генератора с постоянными магнитами8	2
4.1. Выбор оптимальной конструкции синхронного генератора на	
постоянных магнитах для ветроэнергетической установки8	2
4.2. Определение ЭДС в витке при относительном движении	
постоянного магнита с различной формой поперечного сечения8	7
4.3. Математическое моделирование магнитного поля и расчет	
электромагнитных нагрузок синхронного генератора на постоянных	
магнитах с использованием пакета Ansys (Ansoft Maxwell)9	4
4.4. Экспериментальное исследование синхронного генератора на	
постоянных магнитах10	4
Заключение	7
Библиографический список10	8
	_