Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет»

С.В. Лебедев, Е.П. Мирошникова

ОПРЕДЕЛЕНИЕ КАЧЕСТВА ВОДЫ ПО БИОЛОГИЧЕСКИМ, ФИЗИЧЕСКИМ И ХИМИЧЕСКИМ ПОКАЗАТЕЛЯМ

Лабораторный практикум

Рекомендовано Ученым советом федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Оренбургский государственный университет» в качестве учебного пособия для студентов, обучающихся по программам высшего профессионального образования по направлению подготовки 111400.62 Водные биоресурсы и аквакультура

Оренбург 2013 УДК 628.1 (075.8) ББК 38.761.1я73 Л 33

Рецензент – доктор биологических наук, профессор А.М. Русанов

Лебедев, С.В.

Л 33 Определение качества воды по биологическим, физическим и химическим показателям : лабораторный практикум / С.В. Лебедев, Е.П. Мирошникова; Оренбургский гос. ун-т. – Оренбург : ОГУ, 2013. – 109 с.

Лабораторный практикум «Определение качества воды ПО биологическим, физическим и химическим показателям» составлено учетом Федерального государственного образовательного стандарта высшего профессионального образования по направлению подготовки 111400.62 Водные биоресурсы аквакультура, утвержденного приказом Министерства образования и науки Российской Федерации от 28 октября 2009 г. № 487.

В практикуме рассмотрены основные принципы расчета для определения качества воды по биологическим, химическим и физическим показателям, приведено описание некоторых методов эксперимента с использованием современного оборудования. Каждая лабораторная работа включает краткие теоретические сведения, последовательность выполнения экспериментальной части работы, контрольные вопросы и тестовые задания.

УДК 628.1 (075.8) ББК 38.761.1 я 73

- © ЛебедевС.В., Мирошникова Е.П., 2013
- © ОГУ, 2013

Ä

Содержание

Введение	4
1 Лабораторная работа № 1. Биологический анализ природных водоемов	,
1.1 Теоретические сведения	7
1.1.1 Распространение, значение и строение простейших	ĺ
1.1.2 Классификация инфузорий	13
1.2 Экспериментальная часть	19
1.2.1 Устройство микроскопа	19
1.2.2 Методика приготовления временного препарата	2
1.2.3 Правила оформления лабораторной работы	22
2 Лабораторная работа № 2. Биологическая индикация природных водоемов	26
2.1 Теоретические сведения	26
2.2 Экспериментальная часть	37
3 Лабораторная работа № 3. Определение концентрации веществ в воде	40
3.1 Теоретические сведения	40
3.2 Определение содержания взвешенных веществ и мутности воды	42
4 Лабораторная работа № 4. Определение содержания в воде железа с	
использованием прибора фотометра фотоэлектрического КФК-3-01-«ЗОМЗ»	46
4.1 Теоретические сведения	46
4.2 Экспериментальная часть	5
4.2.1 Построение калибровочной кривой	5
$4.2.2$ Определение общего содержания железа в воде (суммы ионов Fe^{2+} и Fe^{3+}).	52
5 Лабораторная работа № 5. Определение загрязненности воды по содержанию	
в ней азотсодержащих веществ (аммиак, нитриты, нитраты) с использованием	
фотометра фотоэлектрического КФК-3-01-«ЗОМЗ»	50
5.1 Теоретические сведения	50
5.1.1 Общие положения	56

5.1.2 Определение содержания азота аммиака	57
5.1.3 Определение содержания азота нитритов	60
5.1.4 Определение содержания азота нитратов	62
6 Лабораторная работа № 6. Определение содержания нефтепродуктов в	
водных средах флуоресцентным методом	66
6.1 Теоретические сведения.	66
6.2 Методика измерения нефтепродуктов.	68
6.2.1 Градуировка анализатора	69
6.2.2 Выполнение измерений	69
6.2.3 Обработка результатов измерений	71
6.2.4 Оформление результатов измерений.	71
6.2.5 Контроль погрешности измерений.	72
7 Лабораторная работа № 7. Определение содержания АПАВ в водных средах	
флуоресцентным методом	74
7.1 Теоретические сведения	74
7.2 Методика определения АПАВ.	75
7.2.1 Градуировка анализатора	75
7.2.2 Выполнение измерений	77
7.2.3 Обработка результатов измерений	78
7.2.4 Оформление результатов измерений	78
7.2.5 Контроль погрешности измерений.	79
Список использованных источников.	81
Приложение А Фотографии основных видов инфузорий	83
Приложение Б Устройство фотометра фотоэлектрического КФК-3-01-«ЗОМЗ»	
и подготовка его к работе	86
Приложение В Калибровочный график мутности воды	95
Приложение Г Устройство прибора «ФЛЮОРАТ-02-3М» и рекомендации к его	
использованию	96

Ä

Ä

Введение

Программа дисциплины «Качество вод» предусматривает наряду с теоретической частью проведение лабораторных работ. Для повышения качества преподавания в лабораторные занятия введены элементы исследования по биологической индикации природных вод. В связи с этим в пособие включены сведения о строении простейших, их классификации и описание видов, которые имеют индикационное значение.

Согласно программе Глобальной системы мониторинга окружающей среды, основной составляющей экологического мониторинга является биомониторинг, предусматривающий как традиционное слежение за загрязнением окружающей среды, так и контроль состояния природных систем и в первую очередь живых систем на основе методов биоиндикации и биотестирования.

Одной из важнейших задач современной биоэкологии является своевременное обнаружение нарушений природных экосистем, чтобы изменения жизненно важных параметров среды обитания человека не зашли слишком далеко. Выявить изменения, происходящие в окружающей среде, можно как с помощью прямых инструментальных физико-химических методов анализа параметров среды, так и путем оценки состояния окружающей среды по реакциям живых организмов, популяций, экосистем на основе методов биоиндикации и биотестирования.

Биоиндикация представляет собой метод оценки абиотических и биотических факторов среды обитания при помощи живых организмов. Биоиндикаторами называются организмы или сообщества организмов, жизненные функции которых так тесно коррелируют с некоторыми факторами среды, что могут применяться для их оценки.

Биотестирование представляет собой один из приемов исследования в водной токсикологии, который используется для определения степени повреждающего действия химических веществ, потенциально опасных для гидробионтов, в

контролируемых экспериментальных лабораторных или полевых условиях путем регистрации изменений биологически значимых показателей (тест-функций) исследуемых тест-объектов, с последующей оценкой их состояния в соответствии с выбранным критерием токсичности.

Практическое использование методов биоиндикации и биотестирования особенно необходимо при обосновании допустимых уровней антропогенного воздействия и антропогенных нагрузок на природные экосистемы и имеет несомненные преимущества при решении проблем охраны окружающей среды и рационального природопользования.