УДК 621.314.2:621.319.4 3-882

Рецензенты:

Заслуженный деятель науки РФ, д-р техн. наук, профессор В.Ф. Дмитриков академик РАЕН, д-р техн. наук Б.Ф. Симонов д-р техн. наук, профессор С.П. Халютин д-р техн. наук, профессор С.А. Харитонов

Зотов Л.Г.

3-882 Энергоэффективные устройства и системы силовой электроники на основе структур с переключаемыми конденсаторами : монография / Л.Г. Зотов. – Новосибирск : Изд-во НГТУ, 2020. – 403 с. – (Монографии НГТУ).

ISBN 978-5-7782-4243-2

В монографии изложены принципы построения и алгоритмы управления нового класса энергоэффективных устройств и систем силовой электроники на основе резонансных структур с переключаемыми конденсаторами. Снижение их массы и объема объясняется более чем на два порядка лучшими удельными энергетическими показателями современных многослойных керамических конденсаторов по сравнению с аналогичными показателями трансформаторов и дросселей. Предложенная концепция их совершенствования, обеспечивающая дополнительное улучшение энергетических и массогабаритных показателей, базируется на фундаментальных принципах временной и пространственной симметрии. Проведен детальный анализ электрических процессов, протекающих в силовой цепи, разработанных устройств и систем, позволяющий осуществить инженерный расчет и оптимизацию параметров их реактивных элементов. Монография предназначена для специалистов, научных работников и аспирантов, специализирующихся в области создания малогабаритных автономных устройств и систем силовой электроники.

УДК 621.314.2:621.319.4

ISBN 978-5-7782-4243-2

© Зотов Л.Г., 2020

[©] Новосибирский государственный технический университет, 2020

ОГЛАВЛЕНИЕ

Введение	7
Глава 1. Принципы построения полупроводниковых преобразова-	
телей постоянного напряжения на основе СПК	11
1.1. Преобразователи с переключаемыми конденсаторами	11
1.2. Преобразователи с переключающимися конденсаторами	19
1.3. Преобразователи с мягкой коммутацией	21
Выводы	37
Глава 2. Нерегулируемые полупроводниковые преобразователи	
постоянного напряжения на основе резонансных СПК	
2.1. Концепция построения полупроводниковых ППН (РСПК)	39
2.2. Многотактные повышающие ППН (РСПК)	45
2.2.1. Принципы построения и анализ функционирования	45
2.2.2. Анализ электрических процессов в многотактных повышающих ППН (РСПК)	50
2.2.3. Анализ влияния числа тактов преобразования повышающего ППН (РСПК) на его массогабаритные показатели	73
2.3. Квазирезонансные повышающие ППН (СПК)	78
2.4. Понижающие ППН (РСПК)	87
2.4.1. Принцип построения и анализ функционирования понижающих ППН (РСПК)	87
2.4.2. Анализ электрических процессов в многотактных понижающих ППН (РСПК)	92
2.5. Двунаправленные ППН (РСПК)	100
2.6. Многотактные ППН (РСПК) с выходным напряжением отрицательной полярности	103
2.7. Повышающие каскадные ППН (РСПК)	106
2.8. Понижающие каскадные ППН (РСПК)	122
2.9. Частотный метод КФС спектрального анализа входных и выходных токов многотактных ППН (РСПК)	130
2.9.1. Спектральный анализ входного и выходного тока много- тактного повышающего ППН (РСПК)	130
2.9.2. Спектральный анализ входного и выходного тока много- тактного понижающего ППН (РСПК)	139
Выводы	143

Ä

Глава 3. Многоуровневые регуляторы постоянного напряжения на основе СПК	145
3.1. Введение. Концепция построения МРПН	
3.2. Ступенчатые МРПН (СПК)	
3.3. Повышающие квазирезонансные МРПН (СПК)	
3.3.1. Повышающие однотактные квазирезонансные МРПН (СПК)	
3.3.2. Повышающие двухтактные квазирезонансные МРПН (СПК)	
3.4. Двунаправленные квазирезонансные МРПН (СПК)	
3.5. Каскадные квазирезонансные РПН (СПК)	175
3.6. МРПН (РСПК) с секционированным источником	180
3.6.1. Двунаправленные двухуровневые РПН (СИ)	184
3.6.2. Двунаправленные трехуровневые РПН (СИ)	190
3.6.3. Минимизация коэффициентов гармоник входного и выходного тока трехуровневого РПН (СИ)	194
3.6.4. Работа трехуровневого РПН (СИ) в режиме рекуперации	201
3.6.5. Трехуровневые РПН (СИ) со средней точкой	205
3.7. Понижающие МРПН (РСПК) с секционированным источником	208
Выводы	215
Глава 4. Многоуровневые системы электроснабжения постоянного	
тока на основе управляемых РСПК	217
4.1. Введение. Концепция построения и функционирования МСЭПТ	217
4.2. Повышающие двухуровневые СЭПТ	219
4.3. Повышающие трехуровневые СЭПТ	224
4.4. Минимизация коэффициента гармоник входного и выходного тока повышающей двухуровневой СЭПТ	235
4.5. Минимизация коэффициента гармоник входного тока трех- уровневой СЭПТ	242
4.6. Понижающие МСЭПТ	250
Выводы	251
Глава 5. Многоуровневые системы обмена электрической энергией постоянного тока на основе РСПК	253
Введение	253
5.1. Двухуровневые СОЭ	254
5.2. Анализ электрических процессов в силовой цепи ДПМ двух- уровневой СОЭ	258