Синтез и кристаллическое строение комплексов An(VI) с анионами циклобутанкарбоновой кислоты [AnO₂(C₄H₇COO)₂(H₂O)₂] (An = U, Np) и [AnO₂(C₄H₇COO)₂(H₂O)] (An = Np, Pu)

© И. А. Чарушникова*, М. С. Григорьев, А. М. Федосеев

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4; * e-mail: charushnikovai@ipc.rssi.ru

Получено 17.01.2017

УДК 539.26:(546.791.6+546.798.21+546.798.22)

Синтезированы и исследованы методом рентгеноструктурного анализа новые комплексы шестивалентных актинидов с анионами циклобутанкарбоновой кислоты (Hcbc): дигидраты [AnO₂(cbc)₂(H₂O)₂] [An = U (I) или Np (II)] и моногидраты [AnO₂(cbc)₂(H₂O)] [An = Np (III) или Pu (IV)]. Дигидраты I, II принадлежат к типу островных. Координационный полиэдр (KII) An(VI) в дигидратах – искаженная гексагональная бипирамида с атомами кислорода двух бидентатно-хелатных анионов C₄H₇COO⁻ и двух молекул воды в экваториальной плоскости и атомами кислорода катионов AnO₂²⁺ в апикальных позициях. На геометрические характеристики КП An(VI) оказывает влияние водородное взаимодействие типа O_w–H···O_{cbc}. Моногидраты III, IV имеют цепочечное строение. КП An(VI) – пентагональная бипирамида с атомами кислорода трех анионов C₄H₇COO⁻ и одной молекулы воды в экваториальной плоскости. Два кристаллографически независимых аниона C₄H₇COO⁻ имеют разные функции: один выступает как бидентатно-хелатный лиганд, второй – как бидентатно-мостиковый лиганд, связывая катионы AnO₂²⁺ в электронейтральные цепочки, вытянутые вдоль направления [010] в кристалле. На строение цепочек большое влияние оказывает водородное связывание.

Ключевые слова: уран(VI), нептуний(VI), плутоний(VI), циклобутанкарбоновая кислота, синтез, кристаллическая структура.

Карбоксилатные комплексы урана и трансурановых элементов активно исследуются на протяжении длительного времени. Большинство исследованных комплексов с анионами монокарбоновых кислот - это соединения алкановых кислот, в частности ацетаты, пропионаты, бутираты, валераты. Среди соединений циклических монокарбоновых кислот исследованы соединения трансурановых элементов с циклопропанкарбоновой кислотой (Нсрс). Синтезированы и структурно охарактеризованы изоструктурные комплексы шестивалентных Np [1] и Am [2] с гуанидинием в качестве внешнесферного катиона состава $[C(NH_2)_3][AnO_2(cpc)_3]$ и дигидрат уранила $[UO_2(cpc)_2(H_2O)_2]$ [3]. Также исследовано комплексообразование катионов AnO₂²⁺ (An = U, Np, Pu) с анионами $C_3H_5COO^-$ [3], полученные данные свидетельствуют о высокой стойкости к окислению циклопропанкарбоновой кислоты и ее анионов и об очень быстрой кристаллизации комплексов. Представляло интерес расширить ряд исследованных соединений циклоалканкарбоновых кислот, в частности исследовать соединения с циклобутанкарбоновой кислотой Hcbc. По ряду U(VI)-Np(VI)-Pu(VI) с анионами циклобутанкарбоновой кислоты были выделены два типа изоструктурных соединений: дигидраты состава [AnO₂(cbc)₂(H₂O)₂], где An = U(I) или Np (II), и моногидраты состава $[AnO_2(cbc)_2(H_2O)]$, где An = Np (III) или Pu (IV).

Экспериментальная часть

В работе использовали Hcbc фирмы Aldrich (98%) без дополнительной очистки. В случае уранила твер-

дый UO₃ растворяли в минимальном количестве водного раствора 0.5 моль/л Hcbc. При медленном испарении при комнатной температуре (18-20°С) в реакционной смеси формировались сростки очень тонких пластинчатых практически бесцветных кристаллов, из которых удалось отобрать образцы для рентгеноструктурного анализа (РСА). В случае Np(VI) и Pu(VI) их твердые перхлораты, полученные упариванием запасных азотнокислых растворов с концентрированной HClO₄, растворяли в воде и осаждали водным раствором аммиака с последующим промыванием полученного осадка водой. Эти осадки растворяли в водном растворе 0.5 моль/л Hcbc. В случае Np(VI) в реакционной смеси образуется несколько типов кристаллических продуктов, включая сростки бледно-розового цвета, аналогичные уранильным. В случае Pu(VI) из реакционной смеси удалось извлечь светло-коричневатые кристаллы, пригодные для РСА.

Рентгенодифракционные эксперименты выполнены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Apex II (излучение Мо K_{α} , графитовый монохроматор) при 100 К. Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [4]. Структуры расшифрованы прямым методом (SHELXS97 [5]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2014 [6]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. В структуре **III** атомы углерода C(6), C(7), 386

Таблица 1. Кристаллографические данные и характеристики рентгеноструктурного эксперимента

Параметр	I	II	III	IV
Формула	$C_{10}H_{18}O_8U$	C ₁₀ H ₁₈ O ₈ Np	C ₁₀ H ₁₆ O ₇ Np	$C_{10}H_{16}O_7Pu$
M	504.27	503.24	485.23	490.23
Сингония	Ромбическая	Ромбическая	Моноклинная	Моноклинная
Пространственная группа	Pccn	Pccn	$P2_{1}/c$	$P2_{1}/c$
a, Å	7.7185(4)	7.7130(7)	11.5140(8)	11.5287(6)
b, Å	10.3873(4)	10.4104(11)	10.2574(7)	10.2758(6)
c, Å	17.4320(8)	17.3630(18)	10.9675(6)	10.9040(6)
β, град	90	90	99.952(5)	100.059(1)
$V, Å^3; Z$	1397.60(11); 4	1394.2(2); 4	1275.81(14); 2	1271.90(12); 2
$ρ_{\rm bhy}$, γ/cm ³	2.397	2.398	2.526	2.560
$\mu(MoK_{\alpha}), \text{ mm}^{-1}$	11.181	4.850	5.291	5.538
Число измеренных/независимых отражений	21609/3069	21689/3063	5888/1552	15711/3697
Число независимых отражений с $I > 2\sigma(I)$	1589	1587	1186	3145
Число уточняемых параметров	94	94	145	169
$R(F); wR(F^2) [I > 2\sigma(I)]$	0.0248; 0.0376	0.0212; 0.0317	0.0302; 0.0512	0.0200; 0.0422
$R(F); wR(F^2)$ [весь массив]	0.0647; 0.0465	0.0590; 0.0401	0.0517; 0.0571	0.0279; 0.0450
GOOF	1.029	1.058	0.989	1.016
$\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$, е·Å ⁻³	1.180; -0.637	1.106; -0.799	0.991; -0.811	0.928; -1.276

Таблица 2. Длины связей (*d*) и валентные углы (ω) в структуре [AnO₂(cbc)₂(H₂O)₂] (**I**, **II**)^а

Связь	d, Å		Vaca	ω, град		
	Ι	II	УТОЛ	Ι	II	
An(1)=O(1)	1.766(2)	1.754(2)	O(1)An(1)O(1a)	180.0	180.00(14)	
An(1)–O(2)	2.461(2)	2.450(2)	O(2)An(1)O(3)	51.61(8)	51.78(7)	
An(1)–O(3)	2.537(2)	2.538(2)	$O(2a)An(1)O_w(1)$	64.75(8)	64.56(7)	
$An(1) - O_w(1)$	2.446(2)	2.440(2)	$O(3)An(1)O_w(1)$	63.73(8)	63.74(7)	
C(1)–O(2)	1.280(4)	1.277(3)	O(2)C(1)O(3)	117.4(3)	118.1(2)	
C(1)–O(3)	1.268(4)	1.264(3)	O(2)C(1)C(2)	119.6(3)	118.9(2)	
C(1)–C(2)	1.491(5)	1.488(4)	O(3)C(1)C(2)	122.9(3)	122.9(2)	
C(2)–C(3)	1.565(5)	1.563(4)	C(1)C(2)C(3)	114.7(3)	115.4(3)	
C(2)–C(5)	1.531(5)	1.546(4)	C(1)C(2)C(5)	121.9(3)	121.3(2)	
C(3)–C(4)	1.534(5)	1.550(5)	C(3)C(2)C(5)	88.0(2)	88.4(2)	
C(4)–C(5)	1.543(5)	1.549(5)	C(2)C(3)C(4)	87.8(3)	87.5(2)	
			C(3)C(4)C(5)	88.6(3)	88.8(2)	
			C(2)C(5)C(4)	88.7(3)	88.2(2)	

^а Операция симметрии: a - (1 - x, 1 - y, 1 - z).

С(8) анионов С₄H₇COO⁻ и атом кислорода O_w(1) молекулы воды уточняли с фиксированными тепловыми параметрами, полученными после первого цикла полноматричного уточнения в анизотропном приближении. Атомы H у анионов С₄H₇COO⁻ введены на геометрически рассчитанные позиции с $U_{\rm H} = 1.2U_{\rm 3KB}$ (С). Атомы H у молекулы воды в структуре III найдены с использованием программы [7], в остальных структурах – локализованы на разностных синтезах Фурье, все атомы H уточняли с $U_{\rm H} = 1.5U_{\rm 3KB}$ (О) и ограниченными межатомными расстояниями О–H и валентными углами H–O–H.

Детали рентгеноструктурного эксперимента и основные кристаллографические данные приведены в табл. 1. Длины связей и валентные углы в структурах приведены в табл. 2 и 3. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депоненты СССС 1526357–1526360.

Результаты и обсуждение

Дигидраты U (I) и Np (II) общего состава $[AnO_2 \cdot (cbc)_2(H_2O)_2]$ принадлежат к типу островных.

Атом An в структуре дигидрата $[AnO_2(cbc)_2(H_2O)_2]$ находится в центре симметрии, его координационный полиэдр (КП) – искаженная гексагональная бипирамида, экваториальную плоскость которой формируют атомы O двух анионов C₄H₇COO⁻ [средние длины связей An–O_{cbc} 2.499 (I) и 2.494 Å (II)] и двух молекул воды, как это показано на примере соединения II (рис. 1). Максимальное отклонение атомов O от среднеквадратичной плоскости составляет 0.0453(15) [O(2)] (I) и 0.0424(13) Å [O(2)] (II).

Ä Ä

Синтез и кристаллическое строение комплексов An(VI)

Связь	<i>d</i> ,	Å	Угол	ω,	ω, град	
	III	IV		III	IV	
An(1)=O(1)	1.749(6)	1.740(2)	O(1)An(1)O(2)	179.3(3)	179.65(11)	
An(1)=O(2)	1.741(6)	1.742(2)	O(3)An(1)O(4)	53.0(2)	53.35(8)	
An(1) - O(3)	2.429(7)	2.423(2)	O(3)An(1)O(6 <i>a</i>)	73.7(2)	76.12(8)	
An(1)-O(4)	2.440(7)	2.430(2)	O(4)An(1)O(5)	75.7(2)	73.92(8)	
An(1) - O(5)	2.416(6)	2.336(2)	$O_w(1)An(1)O(6a)$	80.5(2)	76.95(8)	
An(1)-O(6a)	2.335(6)	2.401(2)	$O_w(1)An(1)O(5)$	77.1(2)	79.61(8)	
$An(1) - O_w(1)$	2.399(7)	2.383(2)				
C(1)–O(3)	1.276(12)	1.262(4)	O(3)C(1)O(4)	116.8(10)	118.6(3)	
C(1)–O(4)	1.274(11)	1.272(4)	O(3)C(1)C(2)	122.5(9)	120.1(3)	
C(1) - C(2)	1.467(14)	1.498(5)	O(4)C(1)C(2)	120.6(10)	121.3(3)	
C(2)–C(3)	1.541(15)	1.557(5)	C(1)C(2)C(3)	118.5(9)	116.3(3)	
C(2)–C(5)	1.550(13)	1.535(5)	C(1)C(2)C(5)	121.6(10)	121.1(3)	
C(3) - C(4)	1.527(14)	1.542(5)	C(3)C(2)C(5)	87.2(8)	87.1(3)	
C(4)–C(5)	1.538(15)	1.542(5)	C(2)C(3)C(4)	89.3(8)	88.1(3)	
			C(3)C(4)C(5)	88.1(8)	87.4(3)	
			C(2)C(5)C(4)	88.6(8)	89.0(3)	
C(6)–O(5)	1.270(11)	1.260(4)	O(5)C(6)O(6)	121.6(9)	121.8(3)	
C(6)–O(6)	1.272(11)	1.275(4)	O(5)C(6)C(7)	118.2(9)	120.5(3)	
C(6) - C(7)	1.486(13)	1.504(4)	O(6)C(6)C(7)	120.3(8)	117.6(3)	
C(7)–C(8)	1.543(12)	1.548(5)	C(6)C(7)C(8)	121.3(8)	119.2(3)	
C(7)–C(10)	1.561(14)	1.557(4)	C(6)C(7)C(10)	118.6(8)	118.5(3)	
C(8)–C(9)	1.522(12)	1.547(5)	C(8)C(7)C(10)	86.9(7)	89.2(3)	
C(9)–C(10)	1.537(13)	1.549(5)	C(7)C(8)C(9)	90.8(7)	88.5(2)	
			C(8)C(9)C(10)	88.5(7)	89.5(3)	
			C(7)C(10)C(9)	89.5(7)	88.1(3)	

Таблица 3. Длины связей (*d*) и валентные углы (ω) в структуре [AnO₂(cbc)₂(H₂O)] (**III**, **IV**)^а

^а Операция симметрии: a - (1 - x, y + 1/2, 1/2 - z) (III), (1 - x, -1/2 + y, 3/2 - z) (IV).

Таблица 4. Геометрические характеристики анионов (cbc1 в I и II; cbc1 и cbc2 в III и IV), двугранный угол (φ, град) между карбоксилатной группой и циклическим фрагментом, максимальное отклонение (Δ, Å) атомов C от среднеквадратичной плоскости циклического фрагмента, угол перегиба (χ, град) циклического фрагмента

Соединение ф1		cbc1		cbc2			
	ϕ_1	Δ_1	χ_1	φ ₂	Δ_2	χ2	
Ι	55.0(3)	±0.136(2)	151.9(4)				
II	54.3(3)	±0.138(2)	151.5(3)				
III	67.8(5)	±0.134(6)	152(1)	39(1)	±0.105(6)	158(1)	
IV	23.0(3)	±0.149(2)	149.0(3)	37.1(3)	±0.112(2)	156.9(4)	

Анион C₄H₇COO⁻ в структуре дигидрата [AnO₂· (cbc)₂(H₂O)₂] является бидентатно-хелатным. В табл. 4 приведены геометрические характеристики аниона (cbc1), включающие в себя двугранный угол (ϕ) между плоскостью карбоксилатной группы и среднеквадратичной плоскостью цикла, максимальное отклонение атомов C от среднеквадратичной плоскости, рассчитанной через четыре атома цикла (Δ), и угол перегиба по средней линии цикла [через атомы C(2)…C(4), рис. 1].

Координационно связанная молекула воды $O_w(1)$ образует водородные связи, в результате которых центросимметричные электронейтральные комплексы [AnO₂(cbc)₂(H₂O)₂] связываются в слои, парал-

Рис. 1. Фрагмент структуры [NpO₂(cbc)₂(H₂O)₂] (**II**), эллипсоиды температурных смещений даны с 50%-ной вероятностью, операция симметрии: a - (1 - x, 1 - y, 1 - z). Атомы Н изображены сферами произвольного радиуса.

Ä

387