

Книга содержит информацию по наиболее важным разделам электроники: как теорию (описание радиотехнических цепей и сигналов, изложение теории электромагнитного поля, перечень основных единиц измерения СИ и т.д.), так и практические сведения (описание усилителей, генераторов, комбинационных схем, счетчиков, преобразователей, программируемой логики, МП и микроконтроллеров с типовыми примерами исполнения).

В настоящее издание вошли разделы по аналоговой и цифровой электронике, в том числе сведения о микропроцессорах и микроконтроллерах. Наглядный материал, включающий таблицы, рисунки и формулы, позволяет быстро производить необходимые расчеты.

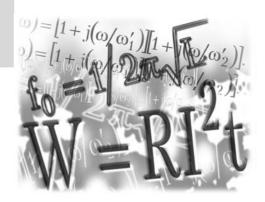
Книга может служить справочным пособием для профессионалов и начинающих радиолюбителей, а также студентов технических вузов и колледжей.

Интернет-магазин: www.alians-kniga.ru

Книга - почтой: Pоссия, 123242, Mocква, а/я 20 orders@alians-kniga.ru

Оптовая продажа:

"Альянс-книга" Тел.: (495)258-9195 books@alians-kniga.ru



СПРАВОЧНИК ПО ЭЛЕКТРОНИКЕ

Богдан Грабовски

Ä

УДК 621.3.01 ББК 32.85 Г75

Грабовски Б.

Г75 Справочник по электронике / Богдан Грабовски; Пер. с фр. Хаванов А. В. – 2-е изд., испр. – М.: ДМК Пресс, 2009. – 416 с.: ил.

ISBN 978-5-94074-472-6

Книга содержит информацию по наиболее важным разделам электроники: как теорию (описание радиотехнических цепей и сигналов, изложение теории электромагнитного поля, перечень основных единиц измерения СИ и т.д.), так и практические сведения (описание усилителей, генераторов, комбинационных схем, счетчиков, преобразователей, программируемой логики, МП и микроконтроллеров с типовыми примерами исполнения).

В настоящее издание вошли разделы по аналоговой и цифровой электронике, в том числе сведения о микропроцессорах и микроконтроллерах. Наглядный материал, включающий таблицы, рисунки и формулы, позволяет быстро производить необходимые расчеты.

Книга может служить справочным пособием для профессионалов и начинающих радиолюбителей, а также студентов технических вузов и колледжей.

УДК 621.3.01 ББК 32.85

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но, поскольку вероятность технических ошибок все равно существует, издательство не может гарантировать абсолютную точность и правильность приводимых сведений. В связи с этим издательство не несет ответственности за возможные ошибки, связанные с использованием книги.

ISBN 2-10-004207-6 (фр.)

© DUNOD, Paris

ISBN 978-5-94074-472-6 (pyc.)

© Перевод на русский язык, оформление. ДМК Пресс

© Издание на русском языке ДМК Пресс, 2009

СОДЕРЖАНИЕ

Предисловие к русскому изданию	15
Глава 1. Единицы измерения физических величин	17
1.1. Основные законы и определения	17
1.1.1. Краткая историческая справка	
1.1.2. Геометрические, кинетические и механические величины	
1.1.3. Единицы измерения магнитных величин	
1.1.4. Основные законы электричества	
1.1.5. Температура. Тепловые цепи	
1.1.6. Фотометрия	
1.1.7. Неметрические единицы, применяемые в США и Великобритании	
1.2. Математические понятия	
1.2.1. Комплексные числа	28
1.2.2. Периодический сигнал. Ряды Фурье	32
1.2.3. Операционное исчисление	36
1.2.4. Погрешности	40
1.2.5. Распределение Гаусса	45
Глава 2. Электрорадиоматериалы	
и пассивные элементы	47
2.1. Проводники, диэлектрики и полупроводники	47
2.1.1. Электрон в вакууме	
2.1.2. Проводники и диэлектрики	
2.1.3. Полупроводники	50
2.1.4. Магнитные материалы	54
2.1.5. Проводники	
2.2. Надежность компонентов. Общие положения	
2.2.1. Определения	
2.2.2. Основные соотношения	
2.2.3. Корытообразная кривая	
2.3. Линейное сопротивление	
2.3.1. Общие характеристики	
2.3.2. Типы резисторов	
2.3.3. Сравнительные характеристики	
2.3.4. Стандарты и коды для постоянных резисторов	
2.4. Потенциометры	
2.4.1. Общие характеристики	
2.4.2. Применяемые типы и стандарты потенциометров	71

Ä

2.5. Нелинейные резисторы	72
2.5.1. Термистор	
2.5.2. Варистор	
2.6. Конденсаторы постоянной и переменной емкости	74
2.6.1. Общие характеристики	
2.6.2. Различные технологии. Неполярные конденсаторы	
2.6.3. Различные технологии. Полярные конденсаторы	
2.6.4. Применение конденсаторов в микроэлектронике	77
2.6.5. Конденсаторы переменной емкости	78
2.6.6. Стандарты и рекомендации	78
2.7. Катушки индуктивности	80
2.7.1. Общие характеристики	
2.7.2. Расчет индуктивности простых обмоток	
2.7.3. Добротность Q и потери в обмотках	
2.7.4. Разновидности ферритовых сердечников	
2.7.5. Спецификации и стандарты	84
2.8. Кварц	85
2.8.1. Кристалл	85
2.8.2. Эквивалентная схема	86
2.8.3. Основные технологии и стандарты	87
F 2 2	0.0
Глава 3. Электрические цепи и фильтры	
3.1. Элементарные электрические цепи	89
3.1.1. Источники тока и напряжения	
3.1.2. Элементарные схемы фильтров низких и высоких частот	
3.1.3. Асимптотические приближения	
3.1.4. Полуинтегратор и полудифференциатор	
3.1.5. Простейшие резонаторы	9/
3.2. Анализ схем	100
3.2.1. Основные теоремы	100
3.2.2. Элементы электрических цепей и определения	104
3.2.3. Составление уравнений для замкнутой цепи	
3.2.4. Построение матрицы проводимостей	
3.2.5. Построение матрицы импедансов	
3.2.6. Составление уравнений открытой цепи	108
3.3. Пассивные четырехполюсники	109
3.3.1. Матрицы импедансов и проводимостей	
3.3.2. Матрицы [h] и [g]	112

СОДЕРЖАНИЕ 7

3.3.4. Соединение четырехполюсников	
3.3.5. Постоянная передачи	
3.4. Резистивные цепи	
3.4.1. Цепь R/2R	
3.4.2. Схемы несогласованных аттенюаторов	
3.4.3. Схемы согласованных аттенюаторов	
3.4.4. Допуски на величину погрешности параметров элементов	
3.4.5. Резистивный мост (мостик Уинстона)	
3.5. Фильтры второго и более высокого порядка	120
3.5.1. Типичные коэффициенты передачи и отклики	120
3.5.2. Операционный анализ фильтров	123
3.5.3. Пассивные фильтры	125
3.6. Связанные контуры	129
3.6.1. Индуктивная связь	129
3.6.2. Связь в общем случае	131
Глава 4. Нелинейные двухполюсники	120
4.1. Различные модели нелинейных двухполюсников	
4.1.1. Основные разновидности	132
4.1.2. Соединение двухполюсника-источника	
и нагрузочного двухполюсника	
4.2. Плоскостной диод	
4.2.1. Упрощенная модель. Статический режим	
4.2.2. Диод в динамическом режиме. Емкость p-n перехода	
4.2.3. Переходный режим	
4.2.4. Частично линейные характеристики	
4.2.5. Используемые эквивалентные схемы	138
4.3. Диоды, чувствительные	
к различным физическим эффектам	
4.3.1. Фотогальванический эффект	
4.3.2. Температурный эффект	
4.4. Технологические разновидности	
4.4.1. Общая таблица разновидностей диодов	
4.4.2. Предельные характеристики и основные параметры	
4.4.3. Стандарты и рекомендации	146
4.5. Элементы с отрицательным сопротивлением	
и управляемые двухполюсники	146
4.5.1. Туннельный диод	146
4.5.2. Тиристоры	
4.5.3. Симистор и симметричный динистор	149
4.5.4. Специальные и высокочастотные диоды	150

Глава 5. Активные трехполюсники	
5.1. Идеальные модели активных трехполюсников	. 152
5.1.1. Биполярный транзистор	. 152
5.1.2. Режим постоянного тока	. 154
5.1.3. Входная и выходная характеристики	
5.1.4. Разновидности активных трехполюсников	. 157
5.1.5. Динамический режим (малосигнальная модель)	
5.1.6. Три схемы включения транзисторов	. 159
5.1.7. Схема включения (ОЭ)	
5.2. Реальные модели	
5.2.1. Статические модели	
5.2.2. Динамический режим	. 161
5.2.3. Неопределенная матрица для транзисторов	
различных типов	. 163
5.3. Предельные величины и параметры	. 164
5.3.1. Статический режим. Биполярный транзистор	. 164
5.3.2. Статический режим. Полевой транзистор	. 165
5.3.3. Динамический режим. Биполярный транзистор	
5.3.4. Динамический режим. Полевой транзистор	
5.3.5. Параметры в переходном режиме	
5.4. Стандарты и рекомендации	
5.5. Статические характеристики полевых транзисторов	. 167
5.5.1. Полевые транзисторы с каналом n-типа	. 167
5.5.2. Полевые транзисторы с каналом р-типа	
5.5.3. Стандарты и рекомендации	
5.6. Транзисторы на арсениде галлия	
Глава 6. Диодные схемы	
6.1. Выпрямление	
6.1.1. Последовательное и параллельное соединения	
6.1.2. Тепловой пробой	
6.1.3. Однополупериодный выпрямитель	. 174
6.1.4. Двухполупериодные выпрямители	
6.1.5. Перегрузка по току и обратному напряжению	
6.2. Пороговые устройства	
6.2.1. Диодные логические схемы	
6.2.2. Диодные ограничители	
6.2.3. Нелинейные ограничители	
6.3. Схемы стабилизаторов и их применение в термометрии	
6.3.1. Простые стабилизаторы	
6.3.2. Стабилизатор с температурной компенсацией	
6.3.3. Температурный датчик	. 188

СОДЕРЖАНИЕ

6.4. Детектирование и сглаживание сигнала 6.4.1. Диодные детекторы	
6.4.2. Сглаживание	189
6.4.3. Выбор постоянной времени	
•	
Глава 7. Усилительные каскады	191
7.1. Типы усилителей	
7.1.1. Классификация	
7.1.2. Каскадирование усилителей	199
7.2. Элементарные схемы транзисторных усилителей	204
7.2.1. Питающие напряжения активного трехполюсника	204
7.2.2. Влияние температуры на параметры усилительного каскада	
7.2.3. Схема типа G	
7.2.4. Схемы типа R или схемы с проходным сопротивлением	
7.2.5. Усилители-повторители	215
7.2.6. Источник тока и активная нагрузка	21/
7.2.7. Дифференциальные усилители	219
7.3. Соединение элементарных схем	222
7.3.1. Схема усилителя типа V	
7.3.2. Схема усилителя тока	220 229
7.3.4. Двойная дифференциальная схема каскодной структуры,	∠∠/
использующая каскодную конфигурацию	231
Глава 8. Обратная связь	
8.1. Общие сведения	
8.1.1. Составные элементы	233
8.1.2. Сигнальный граф	234
8.2. Отрицательная обратная связь	235
8.2.1. Принцип	235
8.2.2. Сложение сигналов	236
8.3. Четыре разновидности отрицательной обратной связи	
8.3.1. Базовые схемы	239
8.3.2. Основные формулы	
8.4. Четырехполюсники в цепи ОС	242
8.4.1. Преобразования четырехполюсников	
8.4.2. Пассивные цепи	
8.4.3. Цепь напряжение-ток	
Глава 9. Операционные усилители	
9.1. Характеристики при разомкнутой ОС и замкнутой ОС	
9.1.1. Характеристики при разомкнутой петле ОС	
9.1.2. Характеристики при замкнутой петле ОС	251

9.2. Схемы усилителей	253
9.2.1. Усилитель типа (R) и типа (V)	
9.2.2. Активная проходная проводимость	
9.2.3. Дифференциальная схема	256
9.2.4. Динамический режим при замкнутой петле ОС	257
9.3. Преобразователи импеданса	
9.3.1. Преобразователи отрицательного импеданса NIC	259
9.3.2. Обобщенный преобразователь импеданса	260
9.3.3. Гиратор	261
9.4. Активные фильтры	265
9.4.1. Схема Рауха	265
9.4.2. Схема Саллена-Ки	
9.4.3. Режекторный фильтр	
9.4.4. Фазовый фильтр или фазовращатель	
9.4.5. Корректирующие фильтры и интеграторы	
9.5. Стандарты	
9.5.1. Стандарты NF С	
9.5.2. Сравнительные характеристики некоторых ОУ	
9.5.3. Назначение выводов и типы корпусов	273
9.6. Характеристики ОУ при высоком уровне сигнала	
9.6.1. Измерительная схема	
9.6.2. Измеряемые параметры	
9.6.3. Микромощные ОУ	275
Глава 10. Пороговые устройства	276
10.1. Основные разновидности	276
10.2. Симметричный ограничитель	
10.2.1. Характеристики. Ограничитель с выходным током	
10.2.2. Схемы пороговых устройств	
10.3. Компаратор	
10.3.1. Принципиальные схемы компараторов	
10.3.2. Характеристики и разновидности компараторов	
10.3.3. Применение	
10.4. Соединение операционных усилителей и диодов	
10.4.1. Использование отрицательного проходного сопротивления	
10.4.2. Идеальный выпрямитель	
10.4.3. Пиковый детектор	
· · · · · · · · · · · · · · · · · · ·	
Глава 11. Умножители и потенциирующие схемы	
11.1. Основные характеристики	
11.1.1. Разновидности умножителей	
11.1.2. Схемы умножителей	287