МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

.

.

Ä

ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ НАНО-МОП ТРАНЗИСТОРОВ

Учебное пособие для вузов

Составители: Б.К. Петров, В.В. Воробьев

Издательско-полиграфический центр Воронежского государственного университета 2012

.

Ä

содержание

ВВЕДЕНИЕ	4
1. ОГРАНИЧЕНИЯ МИНИМАЛЬНЫХ РАЗМЕРОВ ЭЛЕМЕНТОВ	
МИКРОЭЛЕКТРОНИКИ	5
1.1. Ограничения в технологии производства	5
1.1.1. Нечеткость границы тени от фотошаблона	5
1.1.2. Тепловое расширение маски и пластины	6
1.1.3. Влияние флуктуаций примеси	7
1.1.4. Статистическая воспроизводимость технологических	_
процессов	7
1.2. Физические ограничения	8
1.2.1. Минимальная толщина пленки металла	8
1.2.2. Минимальное напряжение источника питания	8
1.2.3. Минимально допустимый ток в ИС	9
1.2.4. Задержка и искажение импульсов на связях	. 11
1.2.5. Ограничения размеров элементов памяти	12
1.5. Ограничения интеграции элементов	12
	12
21 JUDENTED VE VMOI TRAVENERAL MOII TRANSPICTORAX	13
2.1. ИНВЕРТОР НА КМОП ТРАНЗИСТОРАХ	15
	13
У. ЗАВИСИМОСТВ ПОГОГОВОГО ПАПГИИКЕНИИ ОТ ДЛИПЫ КАНАЛА	16
3.1. Ллинноканальный транзистор	10
3.2. Короткоканальный транзистор	19
3.3. Пример расчета порогового напряжения	
4. ЗАВИСИМОСТЬ ПОРОГОВОГО НАПРЯЖЕНИЯ ОТ ШИРИНЫ	
КАНАЛА	21
4.1. Пример расчета зависимости порогового напряжения от ширины	
канала	23
5. ТОК СТОКА НАНОМОП НАНОТРАНЗИСТОРОВ В РЕЖИМЕ	
СМЫКАНИЯ ИСТОКОВОГО И СТОКОВОГО ПЕРЕХОЛОВ	24
6 РАСЧЕТ ПОЛПОРОГОВЫХ ТОКОВ В НАНОМОП	
ТРАНЗИСТОРАХ	29
7 ТУННЕЛЬНЫЙ ТОК ЧЕРЕЗ СТОКОВЫЙ Р-М-ПЕРЕХОЛ ПРИ	
ОБРАТНОМ СМЕШЕНИИ	22
ΟΒΙ ΑΤΠΟΜ ΟΜΕΙЦΕΠΝΝ	
	40
	40
9. ГАСЧЕТ ПАПО-МОП ТРАНЗИСТОРА СО СТРУКТУРОИ КНИ	
9.1. Конструкция транзистора	
9.2. Определение порогового напряжения транзистора КНИ	
9.3. Переходная ВАХ и крутизна транзистора КНИ	
ЛИТЕРАТУРА	60

Получить $\Delta x < 1$ мкм при контактной фотолитографии не удается из-за размывания тени фотошаблона.

Ä

В настоящее время основным методом производства интегральных схем является ультрафиолетовая фотолитография. Использование других методов фотолитографии (рентгеновской, электронной) позволяет существенно уменьшить минимальную ширину линии. Например, для электронов с энергией $E = 10 \div 10^3$ эВ:

$$\Delta x \ge \lambda = \frac{\hbar}{\sqrt{2mE}} \approx 1 \div 0, 1 \text{ Å}.$$

Однако для рентгенолитографии возникают трудности с маскированием, а из-за кулоновского расталкивания электронов в пучке и рассеяния в резисте при электронной литографии реализовать потенциальные возможности методов не удается. К сожалению, эти методы не дают высокой производительности и практически не используются в массовом производстве интегральных схем.

1.1.2. Тепловое расширение маски и пластины

В ходе процесса экспонирования может произойти изменение температуры как маски, так и полупроводниковой пластины.

Пусть коэффициент линейного расширения $\alpha = 2 \cdot 10^{-5}$ 1/К, размер фотошаблона l = 150 мм, $\Delta T = 1$ К. Тогда $\Delta l = 3$ мкм. Поэтому необходима стабилизация температуры до 0,01 К в пределах фотошаблона и обрабатываемого объекта. Снизить требования к изменениям температуры можно, экспонируя пластину по частям.

1.1.3. Влияние флуктуаций примеси

Неизбежные в технологических процессах флуктуации примеси оказывают заметное влияние на параметры p-n-переходов, особенно при малых размерах активной области и низкой концентрации легирующей примеси.

. . . .

Ä

Допустим, что распределение примеси по объему является гауссовым. Пусть $\overline{N}_i = \overline{n} d^3$ – средне количество примеси в активной области элемента, $\varepsilon = (N_i - \overline{N}_i) / \overline{N}_i$ – относительное отклонение количества примеси от среднего значения, ε_M – максимально допустимое относительное отклонение количества примеси от среднего значения. Вероятность того, что в заданном объеме d^3 будет справедливо $\varepsilon > \varepsilon_M$, равна

$$P = 1 - \sqrt{\frac{2}{\pi}} \int_{0}^{\varepsilon_{M} \overline{N}^{1/2}} e^{-y^{2}/2} dy.$$

Число элементов на чипе, не удовлетворяющих выбранному критерию распределения примесей $N_1 = PS/d^3$, должно быть меньше единицы. При $\varepsilon_M = 0,1$; $\overline{n} = 10^{19}$ см⁻³; $S = 10^{-2}$ см² находим $d > 10^{-5}$ см [3].

1.1.4. Статистическая воспроизводимость технологических процессов

Пусть l – размер конструктивного элемента микросхемы. Если этот размер много больше постоянной решетки ($a \approx 3$ Å), то материал рассматривается как непрерывная среда. При $l = 10 \div 100$ Å флуктуации в распределении примеси становятся заметными.

Если N – число атомов легирующей примеси, n – их концентрация, то N = nV. Среднеквадратичное отклонение случайной величины от среднего значения N_{cp} равно [3]:

$$\Delta N_{cp.\kappa \theta.} = \left[\left(N - N_{cp} \right)^2 \right]^{1/2}.$$

Кроме того,

$$\frac{\Delta N_{cp.KG.}}{N_{cp}} = \frac{1}{\sqrt{N_{cp}}} \,.$$

При $N_{cp} = 10^3$, $\Delta N/N = 0.03$ (3%).

Размер элемента, содержащий такое количество атомов примеси при концентрации $n = 3 \cdot 10^{16}$ см⁻³ и кубической форме, оказывается равным 0,3 мкм.

Если $n > 3 \cdot 10^{16}$ см⁻³, размер элемента может быть меньше в несколько раз.

1.2. Физические ограничения

1.2.1. Минимальная толщина пленки металла

Ограничение минимальной толщины пленки металла связано с двумя причинами. Во-первых, минимальная толщина металла определяется требованиями к высоте потенциального барьера φ_M . Барьер формируется уже при толщине металла в несколько моноатомных слоев, поэтому толщина металла может быть около 10 Å. Во-вторых, толщина металла определяется из условия малого сопротивления пленки. При удельном сопротивлении $\rho_M = 10^{-5} \div 10^{-6}$ Ом·см толщина пленки металла 0,01 ÷ 0,1 мкм.

1.2.2. Минимальное напряжение источника питания

Пусть E – энергия, которую носители заряда должны преодолеть, чтобы переключить цепь, причем E = qU, где U – напряжение питания схемы.