Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

С. М. БОРОДАЧЁВ

ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ

Учебное пособие

3-е издание, исправленное и дополненное

Москва Издательство «ФЛИНТА» Издательство Уральского университета 2019

УДК 519.816(075.8)

ББК 22.18я73

Б83

Рецензенты:

д-р физ.-мат. наук, зав. кафедрой вышей и прикладной математики, проф. УрГУПС Γ .А. Тимофеева; канд. физ.-мат. наук старший научный сотрудник Института математики и механики УрО РАН \mathcal{J} . Γ . Ермаков

Научный редактор:

д-р физ.-мат. наук, проф. О.И. Никонов

Бородачёв, С. М.

Теория принятия решений [Электронный ресурс]: учебное пособие / С.М. Бородачёв. — 3-е изд., испр. и доп. — М. : ФЛИНТА : Изд-во Урал. ун-та, 2019. — 160 с.

ISBN 978-5-9765-3631-9 (ФЛИНТА) ISBN 978-5-7996-1196-5 (Изд-во Урал. ун-та)

В учебном пособии рассмотрены математические модели и методы, используемые для поддержки принятия управленческих решений в различных условиях информированности. Представлены как классические (линейное, нелинейное динамическое программирование, И матричные игры, сетевые графики) так и более актуальные вопросы (управление рисками, статистические решающие функции, байесовское оценивание, управляемые марковские процессы, многокритериальная оптимизация). Теоретический материал сопровождается количеством примеров, подобраны упражнения, лабораторный практикум и задания для самостоятельной работы (типовой расчёт).

Для преподавателей вузов, студентов экономических, управленческих и информационных направлений обучения и менеджеров предприятий и организаций.

УДК 519.816(075.8)

ББК 22.18я73

ISBN 978-5-9765-3631-9 (ФЛИНТА) ISBN 978-5-7996-1196-5 (Изд-во Урал. ун-та) © Уральский федеральный университет, 2014

^	
Δ	
\boldsymbol{n}	

Оглавление

введение	3
1. ЭЛЕМЕНТЫ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ	5
1.1. Канонический вид задачи линейного программирования	7
1.2. Симплекс-метод	8
Алгоритм симплекс-метода решения канонической задачи линейного программиро известной исходной угловой точке)	
Метод искусственного базиса	11
1.3. Типичные применения линейного программирования	12
Оптимальное использование ресурсов	12
Планирование инвестиций	13
Транспортная задача	14
Задача о назначениях	15
Задача коммивояжёра	16
1.4. Двойственность в задачах линейного программирования	20
Упражнения	23
2. НЕЛИНЕЙНОЕ И КВАДРАТИЧНОЕ ПРОГРАММИРОВАНИЕ	27
2.1. Выбор инвестиционного портфеля (задача Марковица)	29
3. ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЁННОСТИ И	1 РИСКА
	32
3.1. Условия неопределённости	
Некоторые нестандартные критерии	
3.2. Условия риска (критерий Байеса – Лапласа)	34
Ожидаемая ценность точной информации (EVPI)	
3.3. Статистические решающие правила	35
Минимаксное решающее правило	
Байесовское решающее правило	
Выборочный контроль качества продукции	
3.4. Теоретико-игровой подход к оцениванию параметров	
3.5. Антагонистические игры	50

. Ä

3.6. Приближённое решение матричной игры итеративным методом Брауна -	_
Робинсона	5
3.7. Физическая смесь стратегий. Распределение капиталовложений на	a
основании игровых критериев50	6
Упражнения57	
4. ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ	
Уравнение Р. Беллмана	
4.1. Распределение ресурсов	
4.2. Задача о замене оборудования	
4.3. Управление конечным состоянием (задача Майера)70	
4.4. Стохастические модели динамического программирования	
4.5. Управляемые марковские процессы	
Задача о наилучшем выборе	
Упражнения80	
5. СЕТЕВЫЕ МЕТОДЫ ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ 89	
5.1. Анализ сетевого графика	
5.2. Метод критического пути (<i>CPM</i>)	
5.3. Метод <i>PERT</i>	
6. МНОГОКРИТЕРИАЛЬНАЯ ОПТИМИЗАЦИЯ97	
6.1. Упорядоченные критерии	
О.1. У Порядоченные критерии	
Лексикографический максимум векторного критерия	
6.2. Свёртка векторного критерия	
Взвешенная сумма	
Метод равномерной уступки Чебышёва (минимаксный критерий)	
Упражнения103	
7. ЛАБОРАТОРНЫЙ ПРАКТИКУМ100	
8. ИНДИВИДУАЛЬНАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА (ТИПОВОЙ	

БИБЛИОГРАФИЧЕСКИЙ СПИСОК......156