Ä

РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА

 $egin{array}{ccc} {f T.} & 49 \ {f N}_{2} & 3 & (289) \end{array}$

$\Pi M T \Phi$

2008 май — июнь

(Журнал основан в 1960 г. Выходит 6 раз в год)

СОДЕРЖАНИЕ

Усков В. Н., Мостовых П. С. Тройные конфигурации бегущих ударных волн в потоках невязкого газа	3
Липанов А. М., Карсканов С. А. Исследование установившихся ламинарных потоков, подвергнутых воздействию начального возмущения	11
Ильин В. А., Смородин Б. Л. Динамика электроконвективных структур слабопроводящей жидкости	20
Ворошилова Ю. Н., Рыдалевская М. А. Влияние колебательного возбуждения молекул на скорость звука в высокотемпературном двухатомном газе	28
Баутин С. П. Скорость звука в многокомпонентной покоящейся среде	35
Проскурин А. В., Сагалаков А. М. Устойчивость течения Пуазейля при наличии продольного магнитного поля	45
Макашева А. П., Найманова А. Ж. Численные расчеты сверхзвуковых недорас- ширенных струй в спутном потоке с использованием параболизованных уравнений Навье — Стокса	54
Плотников М. Ю. Влияние коэффициента аккомодации на процессы переноса при по- перечном обтекании цилиндра сверхзвуковым потоком разреженного газа	64
Григорьев Ю. Н., Ершов И. В. Влияние объемной вязкости на неустойчивость Кельвина — Гельмгольца	73
Садин Д. В., Добролюбов А. Н., Зюзликов В. П., Могиленко К. В., Синильщи- ков Б. Е. Взаимодействие газокапельной турбулентной струи и спутного скоростного высокотемпературного потока газа	85
Волков К. Н. Движение и тепломассообмен дисперсной примеси в турбулентных неизотермических струях газа и низкотемпературной плазмы	95
Горелов Д. Н. Расчет давления на контур в режиме нестационарного отрывного обте- кания	109
Баянов И. М., Хамидуллин И. Р., Шагапов В. Ш. Динамика перемешивания пароконденсатного облака с окружающим воздухом	114

НОВОСИБИРСК 2008

• • • •

Ä	

Динариев О. Ю., Евсеев Н. В. О фильтрации газоконденсатной смеси в окрестности трещины гидроразрыва	128
Шагапов В. Ш., Хасанов М. К., Мусакаев Н. Г. Образование газогидрата в пористом резервуаре, частично насыщенном водой, при инжекции холодного газа	137
Жесткая В. Д., Джабраилов М. Р. Численное решение задачи о движении нагрузки по ледяному покрову с трещиной	151
Радченко В. П., Шапиевский Д. В. Математическая модель ползучести микронеоднородного нелинейно-упругого материала	157
Болотина И. О., Данилов В. И., Загуменный А. А. Исследование пластической макродеформации поли- и субмикрокристаллического титана биомедицинского назначения	164
Лавит И. М., Нгуен Вьет Чунг. Термоупругопластическое деформирование толстостенного цилиндра с радиальной трещиной	173
Роговой А. А., Столбова О. С. Эволюционная модель термоупругости при конечных деформациях	184
Михаськив В. В., Жбадинский И. Я. Влияние податливой прослойки на динамические коэффициенты интенсивности напряжений в кусочно-однородном теле с круговой трещиной	197
Остриков О. М. Закономерности развития клиновидных двойников в монокристаллах висмута, подвергнутых полисинтетическому двойникованию	208

Адрес редакции:

630090, Новосибирск, ул. Терешковой, 30, редакция журнала «Прикладная механика и техническая физика» Тел. 330-40-54; e-mail: pmtf@ad-sbras.nsc.ru

Зав. редакцией О. В. Волохова
Корректор Л. Н. Ковалева
Технический редактор Д. В. Нечаев
Набор Д. В. Нечаев
Компьютерная подготовка рисунков В. Л. Овсянников

Сдано в набор 10.01.08. Подписано в печать 12.03.08. Формат 60×84 1/8. Офсетная печать. Усл. печ. л. 25,9. Уч.-изд. л. 21. Тираж 335 экз. Свободная цена. Заказ \mathbb{N}° 229.

Журнал зарегистрирован Министерством печати и информации РФ за \mathbb{N}° 011097 от 27.01.93. Издательство Сибирского отделения РАН, 630090, Новосибирск, Морской просп., 2. Отпечатано на полиграфическом участке Ин-та гидродинамики им. М. А. Лаврентьева. 630090, Новосибирск, просп. Академика Лаврентьева, 15.

- С Сибирское отделение РАН, 2008
- (С) Институт гидродинамики им. М. А. Лаврентьева, 2008
- (С) Институт теоретической и прикладной механики, 2008

•