Ä

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

М. А. Артемов, И. Б. Крыжко, Е. С. Барановский

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ FAST ETHERNET

Учебно-методическое пособие для вузов

Воронеж Издательский дом ВГУ 2016

• •

1 Основные понятия

1.1 Локальная вычислительная сеть: определение

Cemu Fast Ethernet относятся к локальным вычислительным сетям. Локальные вычислительные сети (ЛВС, Local Area Network, LAN) служат для обеспечения связи компьютеров на небольших территориях. Простое определение ЛВС состоит в том, что это система для непосредственного соединения многих компьютеров.

В отдельной локальной сети Fast Ethernet любые два устройства могут связываться непосредственно, поскольку они имеют общую среду передачи. Именно «непосредственность» соединения делает сеть локальной. Обычно средой передачи данных служит кабель и/или иное устройство, физически соединяющее все компьютеры в сети. Можно сказать, что Fast Ethernet — это технология общей среды. Все узлы ЛВС используют одну среду передачи и одни правила передачи данных.

1.2 Топология Fast Ethernet

Для сетей каждого типа характерны правила, которые определяют физическую связь ее компонентов друг с другом и называются топологическими правилами. Существуют три основных вида сетевой топологии: концентратор и луч (звезда), кольцо и шина.

Fast Ethernet физически использует топологию звезда, но логически действует как шинная сеть.

1.3 Передача и получение кадров

Имея в виду устройства, подключенные к сети, мы используем общий термин узлы. Узел связывается с ЛВС с помощью интерфейса.

Узлы взаимодействуют друг с другом путем обмена *кадрами* (frames). В Fast Ethernet любая информация помещается в поле данных одного или нескольких кадров. Пересылка кадров от одного узла к другому возможна лишь при наличии способа однозначной идентификации всех узлов сети. Поэтому каждый интерфейс имеет адрес, который называется его *MAC-адресом*. В технологии Fast Ethernet никакие два узла не могут иметь

правил топологии: модели передачи 1 и 2. Правила модели 1 просты и при использовании только медного кабеля имеют вид:

- длина медного кабеля (категории 3, 4 и 5) между узлом и повторителем не должна превышать 100м;
- одна сеть Fast Ethernet (или ее сегмент) может содержать один или два повторителя класса II;
- запрещается объединять три или более повторителей класса II;
- длина *кабеля связи* (uplink cable) между повторителями класса II не должна превышать 5 метров;
- одна сеть Fast Ethernet (или ее сегмент) может содержать только один повторитель класса I;
- в одной и той же сети Fast Ethernet нельзя одновременно использовать повторители классов I и II.

Правила модели 2 предполагают вычисления с учетом спецификаций Fast Ethernet и данных производителей.

2.2 Что делают повторители

Сеть Fast Ethernet имеют логическую шинную топологию: любые данные, передаваемые одним из узлов, принимаются всеми остальными. В Fast Ethernet функционирование шины (общей среды передачи данных) обеспечивает концентратор (повторители). Повторитель Fast Ethernet — это устройство уровня 1 модели OSI, которое работает только с определенными на этом уровне электрическими сигналами. Повторители не воспринимают кадров и не декодируют их.

Между приходом сигнала в порт и его повторением остальными портами существует небольшая временная задержка. Временной интервал между получением сигнала и его ретрансляцией называется задержкой распространения пакета данного повторителя и точно определяется стандартами Fast Ethernet.

2.3 Пакеты

Узел превращает передаваемый кадр в битовую последовательность, называемую nakemom или kadpom MAC. Затем уровень PHY передает пакеты через среду передачи. Формат пакета имеет вид:

Преамбула	Признак		Признак				
	начала						конца
	кадра						кадра
		Адрес	Адрес	Поле	Данные	Конт-	
		полу-	отпра-	дли-		рольная	
		чателя	вителя	на/тип		сумма	
						кадра	

Преамбула для стандартов 100Base-TX и FX состоит из 7 октетов со следующим значениями:

Признак начала кадра (SFD — Start of Frame Delimeter) — это октет со значением 10101011. Признаком конца кадра служит окончание передачи данных.

2.4 Детали работы повторителя

Функции, обеспечиваемые повторителем согласно стандарту 802.12и

- Функция передачи.
- Функция приема.
- Функция обработки данных. Повторитель должен быть способным передавать сигналы между любыми портами в отсутствии коллизии или иной ошибки.
- Функция обработки поступивших событий. Повторитель должен быть способным обнаружить наличие или отсутствие передачи. Эта функция называется опросом несущей (carrier sense).
- *Функция восстановления сигнала*. Получаемые повторителем сигналы перед ретрансляцией должны быть восстановлены до нормального состояния.

- Функция обработки ошибок. Повторитель должен быть способным обнаружить, когда канал связи с узлом (или сам узел) является источником ошибок, и не давать этим ошибкам распространяться на другие каналы.
- Функция разбиения. Если узел вызывает большое количество следующих одна за другой коллизий или ошибки, то он должен быть изолирован путем закрытия его порта.
- Функция обработки затянувшейся передачи. Повторитель должен быть способным прервать затянувшуюся передачу.

Функция обработки поступивших сообщений включает способы взаимодействия с узлами в соответствии с правилами доступа к среде CSMA/CD. Если несколько узлов начинают передавать одновременно, то повторитель обнаруживает это и посылает всем портам сигнал ПРОБКА (JAM).

2.5 Обработка ошибок

Повторитель отключает порт, если будет обнаружена одна из следующих ошибок:

- ложная несущая;
- множественные коллизии;
- затянувшаяся передача.

Порт будет подключен вновь, только после того, как повторитель удостоверится в устранении ошибки.

Ложная несущая (False Carrier Event, FCE) обнаруживается, когда повторитель получает из порта данные, которые не содержат ограничителя (битовой последовательности) начала потока данных. Обычно появление ложной несущей вызвано физическими проблемами.

Когда повторитель обнаруживает в порту две ложных несущих подряд, он отключает порт и посылает сигнал JAM всем остальным портам. FCE возникает в случае единичного потока данных продолжительностью более 500BT (BT, bit time — время передачи бита в Fast Ethernet, 1BT=10нс) и не имеющего правильного ограничителя начала потока. Сигнал JAM

продолжается 500ВТ или до конца приема данных, вызвавшего появление ложной несущей.

Порт возобновляет свою работу при выполнении одного из двух условий:

- повторитель не обнаружил в порту никакой активности в течении более чем 33100 BT;
- повторитель обнаружил корректный входной поток после того, как линия была свободна в течении межпакетного интервала.

Множественные коллизии. Если в порту фиксируется более 60 коллизий подряд, говорят, что возникла ЕСЕ (Excessive Collision Error — ошибка множественных коллизий). Согласно спецификации Fast Ethernet это значение не может быть меньше 60. Точное значение определяется производителем и (в некоторых устройствах) может изменяться пользователем.

Порт подключается после того как время пребывания его в активном состоянии без коллизий составит 500ВТ.

Затянувшаяся передача. Узел находится в состоянии затянувшейся передачи, если он передает в течении 40000 ВТ. Самый большой пакет передается лишь за 12056ВТ.

Порт подключается немедленно после исчерпания потока данных.

2.6 Уровень РНҮ

Любой сетевой интерфейс и повторитель подключены к среде через уровень, называемый *PHY* (physical). PHY является копмонентом, *зависящим от типа среды передачи*, и рассматривается в модели OSI как уровень 1, или физический уровень.

Fast Ethernet может действовать в четырех средах:

- 100Base-ТХ Медный кабель UTP категории 5, используется 2 пары;
- 100Base-T4 Медный кабель UTP категорий 3 и 4, используется 4 пары;
- 100Base-T2 Медный кабель UTP категории 5, используется 1 пара;

• 100Base-FX Оптоволокно;

где UTP (Unshielded Twisted Pair) — неэкранированная витая пара.

Мы будем рассматривать только 100Base-TX.

Fast Ethernet часто называют *полудуплексными системами*. Данный термин обычно употребляется по отношению к сетевому интерфейсу, связанному с повторителем при помощи правил доступа к среде CSMA/CD, а не полнодуплексных правил. Этот термин технически не совсем корректен. В случае 100BaseX для передачи и приема используются отдельные пути передачи. Такие соединения являются полностью дуплексными. Лишь цифровая шина внутри повторителя физически связывает узлы. Совместно используемой средой является сам повторитель.

По кабелю передается *сбалансированные сигналы*, т.е. сигнал в одном проводе пары противоположен по знаку сигналу в другом проводе, а величина их одинакова. Сбалансированные сигналы устойчивы к шуму.

Разъем RJ45 повторителя называется портом *MIDI-X*. В этом порту пара 1 разъема подключена к приемнику уровня PHY, а пара 3 — к передатчику. Аналогичный разъем NIC называется портом *MIDI*. В порту MIDI к приемнику подключена пара 1, а к передатчику — пара 3.

Благодаря асиметрии портов MIDI и MIDI-X, соединение этих портов осуществляется прямым кабелем (straight through cable). Кабель называется прямым потому, что контакты 1–8 на одном его конце соединены с соответствующими контактами на другом, и оба имеют однотипные штекеры RJ45.

Стандартная разводка кабеля имеет вид:

Штекер R	Штекер RJ45, кросс			
Белый/Оранжевый	1	Пара1	TX_D1 +	Белый/Зеленый
Оранжевый	2	Пара1	TX_D1 -	Зеленый
Белый/Зеленый	3	Пара2	$RX_D2 +$	Белый/Оранжевый
Голубой	4	Пара3		
Белый/Голубой	5	Пара3		
Зеленый	6	Пара2	RX_D2 -	Оранжевый
Белый/Коричневый	7	Пара4		
Коричневый	8	Пара4		