Ä

Министерство образования и науки Российской Федерации Сибирский федеральный университет

В. П. Павлов, В. А. Пенчук

МАШИНЫ ДЛЯ ЗЕМЛЯНЫХ РАБОТ: СИНТЕЗ ТЕХНОЛОГИЙ, ПРОЕКТИРОВАНИЕ, ЭФФЕКТИВНОСТЬ

Монография

Красноярск СФУ 2016

• • •

УДК 62187.001.63 ББК 38.623-02 П121

Репензенты:

- В. В. Москвичев, доктор технических наук, профессор, директор СКТБ «Наука» ИВТ СО РАН, г. Красноярск;
- В. П. Кондрахин, доктор технических наук, профессор, заведующий кафедрой «Горнозаводской транспорт и логистика» Донецкого национального технического университета, г. Донецк, Украина

Павлов, В. П.

П121 Машины для земляных работ: синтез технологий, проектирование, эффективность: монография / В. П. Павлов, В. А. Пенчук. – Красноярск: Сиб. федер. ун-т, 2016. – 328 с. ISBN 978-5-7638-3546-5

В монографии изложены основные положения механики разрушения грунтов рабочими органами землеройных машин. Сформулированы направления повышения эффективности землеройных машин за счет совершенствования рабочих процессов и рабочих органов с учетом пространственности и направленности силового воздействия на грунт. Рассмотрены вопросы взаимозависимости технологий выполнения земляных работ и технических решений по рабочему оборудованию машин, технологии автоматизированного проектирования и моделирования эффективности машин.

Предназначена для научных и инженерно-технических работников и специалистов, которые занимаются исследованиями и созданием машин для земляных работ, а также для аспирантов и студентов, обучающихся по программам подготовки бакалавров и магистров в области транспортных и транспортнотехнологических комплексов.

Электронный вариант издания см.: http://catalog.sfu-kras.ru УДК 621.87.001.63 ББК 38.623-02

ISBN 978-5-7638-3546-5

© Сибирский федеральный университет, 2016

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	6
1. ПРОБЛЕМА СИСТЕМНОГО ПРОЕКТИРОВАНИЯ	
И МОДЕРНИЗАЦИИ ЗЕМЛЕРОЙНЫХ МАШИН	9
1.1. Системотехника производственно-технологических объектов	
при выполнении земляных работ	9
1.2. Задачи проектирования землеройных машин	
с позиций системотехники	13
1.3. Состояние и возможности применения информационных	
технологий в обеспечении жизненного цикла	
землеройных машин	
1.4. Условия реализации рабочих процессов	
1.5. Границы функциональных возможностей машины	
1.6. Модернизация машин в условиях эксплуатации	
1.7. Совершенствование рабочих процессов землеройных машин	
1.8. Развитие и эффективность землеройных машин	57
2. ИНФОРМАЦИОННО-ЛОГИЧЕСКАЯ МОДЕЛЬ	
ПРОЦЕССА ПРОЕКТИРОВАНИЯ	
И МОДЕРНИЗАЦИИ МАШИН ДЛЯ ЗЕМЛЯНЫХ РАБОТ	66
2.1. Информационно-логическая модель процесса проектирования	
и ее схематизация	66
2.2. Формализованные процедуры синтеза технических решений.	
Формирование множества концепций	78
2.2.1. Автоматизированный поиск новых технических решений	7.0
на основе графов синтеза (И-ИЛИ дерева)	78
2.2.2. Выбор технических решений	0.1
на основе нечеткого отношения предпочтения	81
2.3. Проектные операции, процедуры и модули в системном проектировании M3P	07
	8 /
3. МОДЕЛИ ПРОЦЕССОВ ВЗАИМОДЕЙСТВИЯ	
РАБОЧИХ ОРГАНОВ ЗЕМЛЕРОЙНЫХ МАШИН С ГРУНТОМ	
3.1. Грунт как среда взаимодействия и объект моделирования	102
3.1.1. Нормативные характеристики	100
и базовые модели грунтов	
3.1.2. Упруго-фрикционная модель грунта	110
3.2. Развитие физических основ взаимодействия рабочих органов	100
с грунтом	120
3.3. Имитационные модели процессов разрушения грунта	121
рабочими органами землеройных машин	131

4. РЕАЛИЗАЦИЯ ЭНЕРГОСБЕРЕГАЮЩИХ ПРОЦЕССОВ	
РАЗРАБОТКИ ГРУНТА В КОНСТРУКЦИЯХ	
РАБОЧИХ ОРГАНОВ ЗЕМЛЕРОЙНЫХ МАШИН	138
4.1. Конструкции рыхлителей с интенсификаторами напряжений	
растяжения в массиве грунта	138
4.1.1. Рыхлитель с пассивным интенсификатором	
4.1.2. Конструкция рыхлителя с активным интенсификатором	
4.2. Бульдозерные отвалы с интенсификаторами напряжений	
растяжения грунта	144
4.2.1. Конструкция бульдозерного отвала	
с пассивным интенсификатором	144
4.2.2. Конструктивные особенности	
активного бульдозерного оборудования	146
4.3. Грейферные рабочие органы	
с интенсификаторами напряжений растяжения	148
4.4. Специальное оборудование для отрыва крупных элементов	1 10
прочного грунта с использованием щеленарезных установок	156
4.5. Рыхление мерзлых грунтов.	
4.6. Технико-экономические показатели модернизированных	102
рабочих органов землеройных машин	165
	100
5. МОДЕЛИ И ПРОЦЕДУРЫ ПРОЕКТИРОВАНИЯ	
РАБОЧЕГО ОБОРУДОВАНИЯ И ПРИВОДНЫХ СИСТЕМ	
МАШИН ДЛЯ ЗЕМЛЯНЫХ РАБОТ	168
5.1. Математические модели структурно-компоновочного	
проектирования одноковшового экскаватора	168
5.2. Математические модели оптимального	
структурно-параметрического синтеза	
рабочего оборудования экскаватора	177
5.2.1. Формирование описания структуры гидромеханизмов	
рабочего оборудования	177
5.2.2. Кинематический и силовой анализ	
рабочего оборудования	180
5.2.3. Оптимальный структурно-параметрический синтез	
рабочего оборудования	189
5.3. Математические модели и проектные модули	
автоматизированного анализа динамики приводных систем	195
5.3.1. Графы синтеза (схемы замещения) при моделировании	
физически неоднородных приводных систем	195
5.3.2. Динамические процессы в гидроприводе подъема стрелы	200
5.3.3. Исследование динамики гидропневматического молота	202
5.3.4. Исследование динамики гидропривода	
бурильного оборудования	209
5.3.5. Математические модели рабочей среды	
5.4. Модели эффективности процесса копания грунта	
по траектории большой кривизны	217
5.4.1. Особенности резания грунта по траектории большой кривизны	
и их учет при расчете силы и работы кривизны	217

5.4.2. Определение сопротивлений и энергозатрат на наполнение ковша,	
движущегося по траектории большой кривизны	223
5.4.3. Метод расчета на ЭВМ силовых и энергетических показателей	
процесса копания по траектории большой кривизны	226
6. РЕШЕНИЕ СИСТЕМНЫХ ЗАДАЧ ПРОЕКТИРОВАНИЯ	
МАШИН ДЛЯ ЗЕМЛЯНЫХ РАБОТ	
В КОМПЬЮТЕРНОЙ СРЕДЕ	228
6.1. Технологическая схема решения основной задачи	
проектирования машин в компьютерной среде	228
6.2. Силовой потенциал гидравлического экскаватора	
и возможности его реализации в различных грунтовых условиях	230
6.3. Производительность одноковшового экскаватора	
с учетом вероятностных факторов эксплуатации	238
6.4. Сравнительный анализ параметров и эффективности машин	2.1.1
в компьютерной среде	244
6.5. Задачи оптимального проектирования подсистем экскаватора	
6.5.1. Оптимизация стрелоподъемного гидромеханизма	
6.5.2. Оптимизация параметров гидромолота	250
6.6. Оценка эффективности использования экскаваторов в структуре производственной организации	251
	231
7. КОНЦЕПЦИЯ КОМПЬЮТЕРНОЙ СРЕДЫ	
ПРОЕКТИРОВАНИЯ ЗЕМЛЕРОЙНЫХ МАШИН	
7.1. Электронный (виртуальный) макет машины	256
7.2. Компьютерная среда проектирования и требования	0.61
по ее реализации для задач проектирования машины	261
7.3. Метод математического моделирования характеристик машины	267
в компьютерной среде под управлением экспертной системы	
7.4. Представление знаний в задачах проектирования машины	
7.5. Структура методологии проектирования машины в ИПИ-среде	279
7.6. Организация информационных потоков и поддержка проектных задач в компьютерной среде проектирования	282
проектных задач в компьютерной среде проектирования	202
проектирования машины	288
7.8. Управление конфигурацией машины	200
в распределенной среде проектирования	294
7.9. Применение разработанных методов, программного обеспечения	27 .
и методологии в практике проектирования	301
7.10. Экономическая эффективность проектирования машины	
в интегрированной среде	304
ЗАКЛЮЧЕНИЕ	
CHIACOK HIATEDATADLI	310