М. А. Юровская А. В. Куркин

ОСНОВЫ ОРГАНИЧЕСКОЙ ХИМИИ

Допущено Учебно-методическим объединением по классическому университетскому образованию в качестве учебного пособия для студентов, обучающихся по специальности 020101.65 – Химия и по направлению 020100.62 – Химия

4-е издание, электронное

Москва Лаборатория знаний 2020 УДК 547 ББК 24.2я73 Ю78

Серия основана в 2009 г.

Юровская М. А.

Ю78 Основы органической химии: учебное пособие / М. А. Юровская, А. В. Куркин. — 4-е изд., электрон. — М.: Лаборатория знаний, 2020. — 239 с. — (Учебник для высшей школы). — Систем. требования: Adobe Reader XI; экран 10".— Загл. с титул. экрана. — Текст: электронный.

ISBN 978-5-00101-757-8

В учебном издании, написанном преподавателями кафедры органической химии химического факультета МГУ, изложен краткий курс органической химии, включающий сведения о строении, методах получения, свойствах и применении основных классов органических соединений. Рассмотрены особенности механизмов важнейших органических реакций (нуклеофильного замещения, элиминирования и др.). Приведены необходимые сведения о современных наиболее информативных физико-химических методах исследования органических соединений (масс-спектрометрия, спектроскопия ЯМР, ИК-спектроскопия и др.).

Для студентов вузов нехимических специальностей, а также студентов, обучающихся по программе бакалавриата.

УДК 547 ББК 24.2я73

Деривативное издание на основе печатного аналога: Основы органической химии: учебное пособие / М. А. Юровская, А. В. Куркин. — 2-е изд. — М.: БИНОМ. Лаборатория знаний, 2012. — 236 с.: ил. — (Учебник для высшей школы). — ISBN 978-5-9963-1069-2.

В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации

ISBN 978-5-00101-757-8

вв	едение	3
1.	УГЛЕВОДОРОДЫ	ļ
	1.1. АЛКАНЫ	ļ
	Химические свойства алканов	5
	Органическая масс-спектрометрия)
	1.2. АЛКЕНЫ	;
	Химические свойства алкенов	7
	Окисление алкенов в жестких условиях	;
	Восстановление алкенов	,
	Гидроборирование алкенов	5
	Присоединение карбенов	3
	Реакции алкенов, не затрагивающие двойную связь)
	1.3. ДИЕНЫ)
	Сопряженные диены (1,3-диены))
	УФ-Спектроскопия)
	Химические свойства 1,3-диенов	;
	Реакция Дильса-Альдера	5
	Полимеризация	7
	1.4. АЛКИНЫ)
	Реакции ацетиленов с участием тройной связи)
	Окисление алкинов	,
	Восстановление алкинов	ŀ
	Гидроборирование алкинов	,
2.	АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ 46	,
	Спектроскопия ядерного магнитного резонанса	7
	Химические свойства аренов)
	Восстановление ароматических систем	
	Реакции с участием боковых цепей	
	Галогенирование боковых алкильных цепей	,
	Электрофильное замещение в ароматическом ряду	ŀ
	Нитрование	j
	Галогенирование)
	Алкилирование по Фриделю–Крафтсу	
	Ацилирование по Фриделю-Крафтсу	3

	Сульфирование ароматических соединений	5(
	электрофильного замещения	5
	Синтезы ароматических альдегидов	5
	Синтез Гаттермана-Коха	
	Метод Гаттермана	,
	Модификация Адамса	
	Метод Реймера-Тимана	5
	Формилирование по Вильсмайеру	,
3.	НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ	7 (
	3.1. АЛИФАТИЧЕСКОЕ НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ	7 (
	Бимолекулярное нуклеофильное замещение $S_N 2 \ldots 7$	7
	Мономолекулярное нуклеофильное замещение $S_N 1 \dots 7$	
	Анхимерное содействие	7 8
	Амбидентные нуклеофилы	7 8
	3.2. ЭЛИМИНИРОВАНИЕ	3(
	Бимолекулярное элиминирование E_2	3
	Мономолекулярное элиминирование (E_1)	
	Элиминирование по механизму $E_{1\mathrm{cb}}$	
	3.3. АРОМАТИЧЕСКОЕ НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ 8	
	Нуклеофильное замещение атома водорода	
	Нуклеофильное замещение галогена	
	Нуклеофильное замещение других групп) 4
	Замещение неактивированного атома галогена в присутствии	
	металлической меди (реакция Ульмана)	
	Ариновый механизм)(
4.	МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ) ;
	Магнийорганические соединения	
	Цинкорганические соединения	
	Натрийорганические соединения	
	Литийорганические соединения	
5.	СПИРТЫ) (
	5.1. ОДНОАТОМНЫЕ СПИРТЫ	
	Кислотность спиртов	
	Основность и нуклеофильность спиртов	
	Реакции замещения гидроксильной группы) 8
	Получение простых эфиров (нуклеофильное замещение гидроксильной	
	группы на алкоксильную))(

Ä

γ	2	2

Ä

Оглавление	0	гл	ав	ле	ни	е
------------	---	----	----	----	----	---

	Замещение гидроксильной группы на галоген
	Окисление спиртов
	Дегидратация спиртов
	5.2. МНОГОАТОМНЫЕ СПИРТЫ
6.	ПРОСТЫЕ ЭФИРЫ
	α-Оксиды (эпоксиды, оксиды этилена, оксираны)
	Краун-эфиры
7.	КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ
	Реакции карбонильных соединений с нуклеофильными агентами
	Реакции с N-нуклеофилами
	Азины и гидразоны
	Оксимы
	Енамины
	Взаимодействие карбонильных соединений с реактивами Гриньяра 132
	Реакция Виттига
	Реакции карбонильных соединений со слабыми нуклеофилами
	Ацетали
	Реакция карбонильных соединений с пентахлоридом фосфора
	Реакции карбонильных соединений, протекающие через
	стадию образования енольных форм
	Альдольно-кротоновые конденсации
	Конденсации в основных средах
	Конденсация в кислых средах
	Конденсации метилкетонов в кислых средах
	Конденсация разноименных карбонильных соединений
	Амбидентность енолят-анионов
	Другие реакции с участием енольных форм
	Реакция Манниха
	Окисление кетонов
	Окисление альдегидов
	Окисление диоксидом селена
	Окисление кетонов надкислотами
	Восстановление карбонильных соединений
	Восстановление карбонильных соединений
	по Меервейну-Пондорфу-Верлею (гидридный перенос) 148
	Окисление по Оппенауэру
	Реакция Тищенко
	Восстановление карбонильных соединений
	комплексными гидридами металлов
	7.1. а, β-НЕПРЕДЕЛЬНЫЕ КАРБОНИЛЬНЫЕ СОЕДИНЕНИЯ
	Реакции со слабыми нуклеофилами
	Восстановление α,β-непредельных карбонильных соединений
	Лиеновый синтез

8.	КАРБОНОВЫЕ КИСЛОТЫ
	Реакционная способность производных карбоновых кислот
	Гидролиз сложных эфиров
	Реакции эфиров карбоновых кислот с аминами
	Восстановление сложных эфиров
	Взаимодействие сложных эфиров с реактивами Гриньяра
	Енолизация производных карбоновых кислот
	Сложноэфирная конденсация
	Конденсация сложных эфиров с кетонами
	Реакция Дарзана
	Амиды и нитрилы карбоновых кислот
	Гидролиз амидов и нитрилов
	Восстановление амидов и нитрилов
	Взаимодействие амидов и нитрилов с реактивами Гриньяра
	Перегруппировка Гофмана
	Перегруппировка Курциуса
	Соли карбоновых кислот
	Галогенангидриды и ангидриды карбоновых кислот
	Ацилирование енаминов
	Взаимодействие галогенангидридов кислот с реактивами Гриньяра16
	Восстановление галогенангидридов кислот
	Реакция Геля-Фольгарда-Зелинского
	Кетены
	8.1. НЕПРЕДЕЛЬНЫЕ КАРБОНОВЫЕ КИСЛОТЫ
	8.2. ДИКАРБОНОВЫЕ КИСЛОТЫ
	Щавелевая кислота
	Малоновая кислота
9.	АМИНЫ
٠.	
	Качественные реакции, свойственные аминам
	Разделение аминов
	Получение аминов
	Ацилирование аминов
	Алифатические диазосоединения
	Получение диазометана
10.	восстановление
	АРОМАТИЧЕСКИХ НИТРОСОЕДИНЕНИЙ18
	Азоксибензол
	Азобензол
	Гидразобензол
	Ароматические амины

Ä

• • • • • •

Ä

11.	АРОМАТИЧЕСКИЕ СОЛИ ДИАЗОНИЯ)3
	13.1. РЕАКЦИИ С ВЫДЕЛЕНИЕМ АЗОТА	
	Замещение диазогруппы на хлор и бром	
	Замещение диазогруппы на цианогруппу	
	Замещение диазогруппы на нитрогруппу	
	Замещение диазогруппы на иод	
	Замещение диазогруппы на карбоксильную	
	Реакция Мейервейна	
	13.2. РЕАКЦИИ СОЛЕЙ ДИАЗОНИЯ, ИДУЩИЕ БЕЗ ВЫДЕЛЕНИЯ АЗОТА 19 Реакции азосочетания	
	Триазены	
	Получение арилгидразинов	
	Ароматическое нуклеофильное замещение, активируемое диазогруппой 20	
	Ароматическое нуклеофильное замещение, активируемое диазогруппои 20	, ,
12.	ФЕНОЛЫ И ХИНОНЫ)3
	Кислотность фенолов)4
	Реакции фенолов по гидроксильной группе	
	Реакции по ароматическому ядру. Электрофильное галогенирование фенолов 20	
	Взаимодействие с формальдегидом	
	Окисление фенолов	
	Восстановление фенолов	
	Производные фенола как антиоксиданты	
	Хиноны	
	Окислительные свойства хинонов	
13.	ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ	15
	13.1. ПЯТИЧЛЕННЫЕ АРОМАТИЧЕСКИЕ ГЕТЕРОЦИКЛИЧЕСКИЕ	
	СОЕДИНЕНИЯ	
	Методы получения	15
	Химические свойства пятичленных гетероциклов	
	Нитрование	18
	Сульфирование	19
	Галогенирование	9
	Формилирование (реакция Вильсмайера-Хаака)	2(
	Ацилирование	2(
	Кислотные свойства пиррола	22
	Индол	22
	Синтез индола	
	Химические свойства индола	

13.2. I	ШЕСТИЧЛЕННЫЕ АРОМАТИЧЕСКИЕ Г	E.	ГΕ	PC	ΣЦ	ИІ	ΚЛ	Ы				
Γ	ПИРИДИН, ХИНОЛИН											. 224
Методы	г синтеза											. 224
Синтез	Скраупа											. 225
Синтез	Дебнера-Миллера											. 225
Химиче	еские свойства пиридина и хинолина											. 226
	ость											
Окислен	ние и восстановление											. 227
Электро	офильное замещение в пиридиновом ядре											. 227
Химия 1	N-оксида пиридина											. 229
Нуклеоф	фильное замещение в ряду пиридина											. 230

Ä

• • •