УДК 544 ББК 24.58я73 Я30

Серия основана в 2009 г.

Ягодовский В. Д.

ЯЗО Адсорбция : учебное пособие / В. Д. Ягодовский. — 3-е изд., электрон. — М. : Лаборатория знаний, 2024.-219 с. — (Учебник для высшей школы). — Систем. требования: Adobe Reader XI ; экран 10". — Загл. с титул. экрана. — Текст : электронный.

ISBN 978-5-93208-675-9

В учебном пособии, написанном профессором РУДН, излагаются теоретические основы адсорбции—сложного явления на границе раздела фаз газ—твердое тело, газ—жидкость, жидкость—твердое тело, жидкость—жидкость. Адсорбция играет важную роль в природных процессах (обмен энергией между геологическими слоями, концентрирование веществ клетками живых организмов при метаболизме и т. д.), находит широкое применение в технике, медицине, фармакологии, лабораторной практике, при очистке промышленных газов и жидкостей от вредных примесей, очистке питьевой воды, изготовлении катализаторов для нефтепереработки, а также получении других полезных веществ. В качестве адсорбентов на практике чаще используются пористые материалы на основе различных активных углей, оксида алюминия, алюмосиликатов и силикагелей.

Для студентов химических и химико-технологических вузов.

УДК 544 ББК 24.58я73

Деривативное издание на основе печатного аналога: Адсорбция: учебное пособие / В. Д. Ягодовский. — М.: БИНОМ. Лаборатория знаний, 2015. — 216 с.: ил. — (Учебник для высшей школы). — ISBN 978-5-9963-1681-6.

В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации

ISBN 978-5-93208-675-9

© Лаборатория знаний, 2015

Ä

ОГЛАВЛЕНИЕ

Предисловие	3
Введение	4
Глава 1. Термодинамическое описание адсорбции	11
1.1. Метод Гиббса	11
1.1.1. Изменение интегральных термодинамических функ-	
ций при адсорбции	18
1.1.2. Изменения дифференциальных мольных величин	23
1.1.3. Вычисление термодинамических функций из экспе-	
риментальных данных	24
1.1.4. Константа адсорбционного равновесия	27
1.1.5. Термодинамические модели изотерм адсорбции	28
1.2. Адсорбция на поверхности твердых тел	34
1.3. Адсорбция из жидких растворов на поверхности твердых	
адсорбентов (по А. В. Киселеву)	40
1.4. Примеры и задачи	45
1.5. Вопросы	50
Литература	50
Глава 2. Методы определения изотерм адсорбции	51
2.1. Весовой метод	51
2.2. Объемный метод	52
2.3. Определение изотерм адсорбции из хроматографических	
данных	54
2.4. Изотермы адсорбции при давлениях $<10^{-4}$ мм рт. ст	56
2.5. Изотермы адсорбции на твердом адсорбенте из жидкого	
раствора	58
Литература	58

•

Ä

Ä

	Адсорбционные силы при физической адсорбции	59
3.1.	Силы притяжения	60
	3.1.1. Электронейтральная система зарядов во внешнем	
	поле	60
	3.1.2. Кулоновское притяжение между диполем и ионом	
	и между двумя диполями	62
	3.1.3. Индукционное взаимодействие	67
	3.1.4. Дисперсионное взаимодействие (силы Ван дер Ва-	
	альса)	69
3.2.	Силы отталкивания	75
3.3.	Эмпирические модельные потенциалы	76
3.4.	Адсорбционный потенциал	80
	3.4.1. Примеры расчетов адсорбционного потенциала	82
3.5.	Задачи	85
	Вопросы	86
	ература	86
	Пористые адсорбенты	87
4.1.	Краткие сведения о пористых адсорбентах	87
	4.1.1. Активные угли	87
	4.1.2. Наноуглеродные материалы (НУМ)	89
	4.1.3. Фуллерены	89
	4.1.4. Силикагели	91
	4.1.5. Активный оксид алюминия	91
	4.1.6. Алюмосиликаты	93
4.2.	Термодинамическое описание адсорбции на пористых	
	адсорбентах	96
	4.2.1. Теория объемного заполнения микропор (ТОЗМ)	96
	4.2.2. Деформация пор микропористых адсорбентов	106
4.3.		109
		118
		120
	*	121
	• •	122
	7.1 I	122
5.2.	Реальный адсорбционный слой на однородной поверхности	
	5.2.1. Решеточные модели	133
	5.2.2. Вириальное уравнение изотермы адсорбции	146
	5.2.3. Адсорбция на неоднородной поверхности	151
5.3.	Вопросы	157
	<u> -</u>	157

Ä

Оглавление

Глава 6.	Хемосорбция	158
		160
	Элементы теории хемосорбции	162
	6.2.1. Полуэмпирические методы расчета теплоты	
	хемосорбции	162
	6.2.2. Квантово-химический анализ характеристик	
	хемосорбции	164
	6.2.3. Хемосорбция на оксидах	170
6.3.	Вопросы	171
Лит	ература	171
Глава 7.	Физические методы исследования адсорбции	173
		173
		175
	* *	180
7.2.		182
	7.2.1. Примеры использования спектров ЭПР в адсорбции	185
7.3.		187
		189
7.4.		191
	7.4.1. Примеры использования метода ДМЭ	193
7.5.	Работа выхода электрона	195
	7.5.1. Термоэлектронная эмиссия	197
	7.5.2. Фотоэлектрический метод (по Фаулеру)	198
	7.5.3. Контактная разность потенциалов (КРП)	199
	7.5.4. Автоэлектронная эмиссия	200
	7.5.5. Поляризация адсорбата на островковых пленках	
		201
	7.5.6. Примеры определения работы выхода при адсорбции 2	201
	1	203
Лит	ература	204
Приложе	ния	207
		207
_	· · · · · · · · · · · · · · · · · · ·	212
Общая л	итература	213