УДК 621.3.011.7(075.8) П 303

Рецензенты:

канд. техн. наук, доцент В. А. Аксютин д-р техн. наук, профессор З. С. Темлякова

Работа подготовлена кафедре теоретических основ электротехники для студентов дневного и заочного отделения электротехнических специальностей

Петренко Ю. В.

П 303 Теоретические основы электротехники. Физические основы теории электрических цепей и методы их расчета: учебное пособие / Ю. В. Петренко. — Новосибирск: Изд-во НГТУ, 2022. — 132 с.

ISBN 978-5-7782-4677-5

Пособие посвящено изучению теоретических аспектов теории электромагнитного поля, теории электрических цепей постоянного и переменного тока, рассмотрены алгоритмы решения задач теории поля и электрических цепей. Приведены практические примеры.

Структура и содержание пособия соответствуют программе второй части курса «Теоретически основы электротехники» для студентов электротехнических специальностей.

Предназначено для самостоятельной работы студентов энергетических специальностей всех форм обучения.

УДК 621.3.011.7(075.8)

ISBN 978-5-7782-4677-5

© Петренко Ю. В., 2022

© Новосибирский государственный технический университет, 2022

Ä

ОГЛАВЛЕНИЕ

Введение	3
I. Физические основы электротехники	4
1. Электростатическое поле	4
1.1. Напряженность электростатического поля	5
1.2. Напряженность поля точечного заряда	
1.3. Напряженность поля N точечных зарядов	
1.4. Напряженность поля объемно-распределенных зарядов	8
1.5. Расчет напряженности поля линейно распределенных зарядов	9
1.6. Напряженность поля поверхностно распределенных зарядов	10
1.7. Теорема Гаусса	11
1.8. Энергетические характеристики электростатического поля	13
1.9. Принцип потенциальности в электростатике и его интегральная	
форма	
1.10. Потенциал в электростатическом поле	
1.11. Напряжение между двумя точками	
1.12. Потенциал в поле точечного заряда	
1.13. Потенциал в поле N точечных зарядов	
1.14. Потенциал в поле объемно распределенных зарядов	
1.15. Потенциал в поле поверхностно распределенных зарядов	
1.16. Потенциал в поле линейно распределенных зарядов	
1.17. Граничные условия в электростатике	24
1.18. Граничные условия на границе раздела «диэлектрик-	
проводник»	
1.19. Граничные условия на границе «диэлектрик – диэлектрик»	
2. Поле токов в проводящей среде	30
2.1. Электродвижущая сила (ЭДС)	31
2.2. Электродвижущая сила замкнутого контура	32
2.3. Вектор плотности тока	

2.4. Расчет тока, пронизывающего поверхность S , по заданному	
распределению плотности тока	34
2.5. Первый закон Кирхгофа в интегральной форме	35
2.6. Закон Ома в дифференциальной форме	36
2.7. Интегральная форма обобщенного закона Ома	38
2.8. Второй закон Кирхгофа в интегральной форме	40
3. Стационарное магнитное поле	43
3.1. Основные законы и характеристики стационарного магнитного	
поля. Магнитная индукция	43
3.2. Вектор намагниченности вещества. Вектор напряженности	
магнитного поля. Закон полного тока	
3.3. Скалярный магнитный потенциал	47
3.4. Уравнение Лапласа для скалярного магнитного потенциала	48
3.5. Векторный магнитный потенциал	49
3.6. Уравнения Лапласса-Пуассона для векторного потенциала	50
3.7. Общее решение для векторного потенциала в однородной	
и изотропной среде	52
3.8. Закон Био-Савара-Лапласа	54
3.9. Граничные условия в магнитном поле	55
4. Расчет параметров электрических цепей	59
4.1. Емкость плоского конденсатора	59
4.2. Внутренняя индуктивность бесконечно длинного проводника	
с током	62
4.3. Взаимная индуктивность прямоугольной рамки и тонкого	
проводника с током	64
II. Электрические цепи	67
5. Электрические цепи постоянного тока	
5.1. Узлы и ветви электрической цепи	
5.2. Условно-положительные направления токов и напряжений	68
5.3. Применение законов Кирхгофа для расчета электрических цепей	69
5.4. Обобщенный закон Ома	
5.5. Анализ цепей по законам Кирхгофа	
5.6. Метод контурных токов	
5.7. Метод узловых потенциалов	
5.8. Метод эквивалентного генератора	
5.9. Метод наложения	

6. Переменный ток	97
6.1. Синусоидальный ток в элементах электрической цепи	99
6.2. Векторные диаграммы	
6.3. Анализ работы цепей на переменном токе	
7. Методы преобразования электрических цепей	113
7.1. Теорема о компенсации	113
7.2. Преобразование источника тока в источник ЭДС и обратно	
7.3. Преобразование треугольника сопротивлений в эквивалентную звезду и обратно	117
эквивалентную	120
7.5. Вынос ЭДС за узел	
8. Баланс мощностей в электрических цепях постоянного	
и переменного тока	123
Библиографический список	127

Ä Ä