Субботин Е. А.

МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЯ ПАРАМЕТРОВ ОПТИЧЕСКИХ ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМ

Рекомендовано федеральным государственным образовательным бюджетным учреждением высшего профессионального образования Московский технический университет связи и информатики в качестве учебного пособия по дисциплине «Метрология в оптических телекоммуникационных системах» для студентов технических вузов по направлению 210700 – «Инфокоммуникационные технологии и системы связи»

Регистрационный номер рецензии Московского государственного университета печати им. Ивана Федорова — 1992 от 29.06.2012 г.

Москва Горячая линия - Телеком 2013

УДК 621.372.8 ББК 32.88 С89

Рецензенты: доктор техн. наук, профессор HO . А. Пальчун, доктор техн. наук, профессор $\mathit{B. B. Лебедянцев}$

Субботин Е. А.

С89 Методы и средства измерения параметров оптических телекоммуникационных систем. Учебное пособие для вузов. – М.: Горячая линия—Телеком, 2013. – 224 с: ил. ISBN 978-5-9912-0304-3.

Систематизированы обширные сведения в области методов и средств измерений параметров систем и устройств связи оптического диапазона. Рассмотрены вопросы метрологического обеспечения и сертификации средств измерений параметров волоконно-оптических систем передачи информации. Особое внимание уделено измерениям в волоконно-оптических линиях передачи. Приведены технические характеристики источников и приемников оптического излучения, оптических тестеров и импульсных рефлектометров. Пособие подготовлено в соответствии с ФГОС 3-го поколения.

Для студентов старших курсов, обучающихся по направлению 210700- «Инфокоммуникационные технологии и системы связи».

ББК 32.88

Адрес издательства в Интернет WWW.TECHBOOK.RU

Учебное издание

Субботин Евгений Андреевич

Методы и средства измерения параметров оптических телекоммуникационных систем

Учебное пособие для вузов

Редактор Ю. Н. Чернышов Компьютерная верстка Ю. Н. Чернышова Обложка художника В. Г. Ситникова

Подписано к печати 28.10.2012. Формат 60×88 1/16. Усл. печ. л. 14. Изд. № 12304. Тираж 500 экз. (1-й завод 200 экз.)

ISBN 978-5-9912-0304-3

© Е. А. Субботин, 2012

© Издательство «Горячая линия-Телеком», 2012

Введение

Интенсивный прогресс волоконно-оптических телекоммуникационных технологий невозможен без достижений измерительной техники, развитие которой, с одной стороны, зависит от достижений теории передачи информации, физической и квантовой оптики, математического моделирования информационных, физических и технологических процессов, физики и технологии волоконно-оптических и полупроводниковых элементов, схемотехники, микроэлектроники, а с другой — влияет на их развитие, являясь базой, без которой невозможен прогресс ни в одной области техники. Следует также отметить, что повышение качественных показателей предоставляемых телекоммуникационных услуг обусловливает необходимость в высокоточных средствах измерений как при выходном контроле оптических компонентов, так и в процессе эксплуатации волоконно-оптических систем передачи.

В настоящее время в ряде вузов страны ведется подготовка специалистов по физике и технике оптической связи. Однако до настоящего времени отсутствуют учебники и учебные пособия, в которых была бы сосредоточена вся необходимая информация по методам и средствам измерения в оптических телекоммуникационных системах. Информация подобного характера разрознена и мало доступна студентам. Из большого объема сведений, имеющихся в современной технической литературе, отобрана лишь та информация, которая, на наш взгляд, позволяет оценить состояние и тенденцию развития, а также сделать правильный выбор средств измерений. Такой подход определил структуру и содержание настоящего учебного пособия. Его материал условно можно разделить на три, казалось бы, самостоятельные части, включающие:

- методы и средства измерений в волоконно-оптических линиях передачи;
- методы и средства измерений в волоконно-оптических системах передачи;
- метрологическое обеспечение и сертификация средств измерений параметров волоконно-оптических систем передачи информации.

На самом деле эти разделы тесно связаны между собой, так как обеспечивают комплексное понимание задач и предмета измерений параметров систем и устройств связи оптического диапазона.

ОГЛАВЛЕНИЕ

	Введение	3
1	Физические основы передачи информации по волокон-	
	но-оптическим линиям передачи	4
	1.1. Структурная схема оптической системы передачи	4
	1.2. Основные параметры оптических волокон	8
	1.2.1. Оптические параметры	8
	1.2.2. Волновые параметры	10
	1.2.3. Собственные затухания в оптических волокнах	12
	1.2.4. Дополнительные затухания в оптическом кабеле.	16
	1.3. Дисперсия оптического волокна	17
	1.3.1. Модовая дисперсия	20
	1.3.2. Хроматическая (частотная) дисперсия	23
	1.3.3. Поляризованная модовая дисперсия	29
	1.4. Полоса пропускания оптического волокна	30
	Контрольные вопросы	31
2.	Классификация и технологии измерений в волоконно-	
	оптических системах передачи	33
	2.1. Основные понятия и определения	33
	2.2. Виды измерений в волоконно-оптических системах пе-	
	редачи	38
	2.3. Основные виды и характеристики контроля в волокон-	
	но-оптических системах передачи	45
	Контрольные вопросы	47
3.	Измерения параметров волоконно-оптических линий	
	передачи	48
	3.1. Назначение и виды измерений в волоконно-оптических	
	линиях передачи	48
	3.2. Методы и средства измерения затухания	50
	3.2.1. Метод двух точек	52
	3.2.2. Метод обрыва	53
	3.2.3. Метод вносимых потерь	57
	3.2.4. Измерение приращения затухания при воздействии	
	внешних факторов	58

• •

Ä

		3.2.5. Измерение переходного затухания	60
		3.2.6. Метод обратного рассеяния	62
		3.2.7. Приборы для измерения затуханий в оптических	
		кабелях	77
	3.3.	Методы и средства измерения полосы пропускания и	
		дисперсии оптических волокон	79
		3.3.1. Измерение межмодовой дисперсии	81
		3.3.2. Измерение хроматической дисперсии	85
		3.3.3. Измерение поляризационной модовой дисперсии	91
	3.4.	Измерение профиля показателя преломления	102
		3.4.1. Метод сканирования отражения от торца	103
		3.4.2. Метод исследования пространственного распреде-	
		ления излучения	105
		3.4.3. Метод рефракции	107
		3.4.4. Интерферометрические методы	110
		3.4.5. Метод фокусировки	112
	3.5.	Измерение числовой апертуры	115
		3.5.1. Метод «трех колец»	116
		3.5.2. Метод ближней зоны	117
		3.5.3. Метод дальней зоны	118
		3.5.4. Метод калиброванного зазора	120
	3.6.	Измерение длины волны отсечки одномодовых во-	
		локон	121
	3.7.	Измерение диаметра поля моды одномодовых свето-	
		водов	122
	3.8.	Измерение электрического сопротивления наружной	
	0.0	оболочки оптического кабеля	124
	3.9.	Измерение геометрических и механических характе-	105
		ристик оптических волокон	125
		Контрольные вопросы	126
4.		иторинг разветвленных волоконно-оптических	
		i	128
	4.1.	Задачи и методы мониторинга волоконно-оптических	100
	4.0	линий передачи	128
	4.2.	Принципы построения и сравнительный анализ систем	197
		мониторинга	137
		4.2.1. Общие требования к системам мониторинга	137
		4.2.2. Специальные требования для систем RFTS корпо-	190
		ративных сетей	138 139
		4.2.3. Общие принципы построения систем мониторинга	
		4.2.4. Функции систем мониторинга	142

	4.2.5. Сравнительный анализ систем мониторинга ВОК	146
	4.3. Организация проведения ремонтно-восстановительных	
	работ по результатам мониторинга	137
	4.3.1. Основные положения по технологии проведения	
	ремонтно-восстановительных работ	137
	4.3.2. Планово-профилактические работы на ΛKC ВОЛП	
	151 4.3.3. Технология выполнения ППР	152
	4.3.4. Аварийно-восстановительные работы	153
	4.3.5. Технология проведения АВР	155
E		
υ.	Методы измерения параметров оптического стыка систем передачи SDH	159
	5.1. Классификация и основные параметры оптических сты-	
		159
	5.2. Общие вопросы измерений параметров оптических сты-	108
	KOB	165
	5.3. Измерения в точке соединения станционного и линей-	100
		166
	5.3.1. Измерение спектральных характеристик	166
	5.3.2. Измерение уровня мощности оптического излуче-	
	гия кин	167
	5.3.3. Измерение коэффициента гашения и характерис-	
	тик формы оптического сигнала на передаче	
	5.3.4. Измерение фазового дрожания оптического сигнала 168	
	5.4. Измерения между точками соединения станционного и	
	линейного кабеля в оптической цепи на передаче и на	
	приеме	169
	5.4.1. Измерение диапазона перекрываемого затухания.	169
	5.4.2. Измерение суммарной дисперсии	170
	5.4.3. Измерение затухания отражения кабельного обору-	
	дования и коэффициента дискретного отражения между	4 -
	точками Пд(S) и Пр(R)	170
	5.5. Измерение параметров в эталонной точке $\Pi p(R)$	172
	5.5.1. Измерение уровня чувствительности	172
	5.5.2. Измерение уровня перегрузки	175
	5.5.3. Измерение коэффициента отражения приемного	1.75
	устройства	175
	ческого сигнала	175
	5.5.5. Измерение коэффициента передачи фазового дро-	
	жания регенератора	177

224

Ä

	5.5.6. Определение дополнительных потерь оптического тракта	177
	Контрольные вопросы	178
6.	Метрологическое обеспечение и сертификация средс-	
	тв измерений параметров волоконно-оптических сис-	
	тем передачи информации	180
	6.1. Задачи и структура метрологической службы отрасли	180
	6.2. Задачи метрологического обеспечения измерений па-	
	раметров волоконно-оптических систем передач	182
	6.3. Правила разработки и использования в отрасли мето-	
	дик выполнения измерений	186
	6.4. Порядок сертификации СИЭ в отрасли «Связь»	189
	6.5. Технические основы метрологического обеспечения	191
	Контрольные вопросы	195
	Глоссарий	196
	Список сокращений	202
	Список обозначений	206
	Литература	210
	Приложение А	212
	Приложение Б	215
	Приложение В	217
	Приложение Г	218

• •