Ϊ

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М.В. Ломоносова»

С.В. Платоненков, Е.В. Лимонникова

МОДЕЛИРОВАНИЕ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ В СРЕДЕ MATLAB

Учебное пособие

Архангельск САФУ 2016

• • •

Ä

УДК 621.313+621.314 ББК 32.965.3 ПЗ7

> Рекомендовано к изданию учебно-методическим советом Северного (Арктического) федерального университета имени М.В. Ломоносова

Рецензенты: Душкин Ю.В. – заместитель главного инженера по электромонтажным работам и ремонту электрооборудования, ОАО «СПО «Арктика»; Сычев И.Д. – главный инженер, ЗАО «Биус»

Платоненков, С.В.

ПЗ7 Моделирование электромеханических систем в среде МАТLAB: учебное пособие / С.В. Платоненков, Е.В. Лимонникова; Сев. (Арктич.) федер. ун-т. – Архангельск: САФУ, 2016. – 104 с.: ил. ISBN 978-5-261-01121-7

Приведены основы моделирования электрических машин (трансформаторы, асинхронные и синхронные машины и машины постоянного тока) в среде MATLAB 7.х с помощью приложения Simulink

Для студентов, обучающихся по направлениям бакалавриата 180100.62 «Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры», 220400.62 «Управление в технических системах».

УДК 621.313+621.314 ББК 32.965.3

ISBN 978-5-261-01121-7

- © Платоненков С.В., Лимонникова Е.В., 2016
- © Северный (Арктический) федеральный университет имени М.В. Ломоносова, 2016

Ä

ВВЕДЕНИЕ

В настоящее время внедрение современных технологий приобретает большое значение при изучении электрических систем, в том числе трансформаторов и электрических машин. Немаловажное значение имеет практика применения систем моделирования электрических аппаратов. Одним из примеров таких программных комплексов, позволяющих решать подобные задачи, служит среда МАТLAB и пакет его расширения Simulink.

В данном учебном пособии приведены основные теоретические материалы, а также описание выполнения практических работ, позволяющих изучить принцип работы основных электромеханических устройств, в процессе освоения бакалаврами дисциплин «Компьютерное моделирование электроэнергетических систем» и «Электромеханические системы». В представленных работах подробно описываются лабораторные установки, необходимые для практического изучения моделей поведения различного рода электрических машин и трансформаторов.

С помощью данного пособия, а также среды MATLAB/ Simulink можно промоделировать процессы, протекающие в однофазных и трёхфазных трансформаторах, асинхронных машинах с короткозамкнутым и фазным роторами, синхронных генераторах и двигателях, а также машинах постоянного тока.

При изложении теоретического материала были использованы труды таких учёных, как А.И. Вольдек, И.П. Копылов, Е.В. Арменский [1,2,6].

ОГЛАВЛЕНИЕ

Введение	
1. Электормеханические устройства автоматики	4
1.1. Общие сведения	4
1.2. Физические основы электромеханики	
2. Трансформаторы	15
2.1. Конструкция и принцип действия трансформаторов	
2.2. Трехфазные трансформаторы	
Лабораторная работа № 1. Исследование однофазного трансформа-т	opa
Лабораторная работа № 2. Исследование трехфазного трансформа-то	opa
3. Асинхронные машины	33
3.1. Вращающееся магнитное поле машины переменного тока	33
3.2. Механическая характеристика	
3.3. Конструкция и принцип действия трёхфазных асинхронных	
машин	40
Лабораторная работа № 3. Исследование трехфазной асинхронной м	a-
шины с короткозамкнутым ротором	
Лабораторная работа № 4. Исследование трехфазной асинхронной м	
шины с фазным ротором	
4. Синхронные машины	56
4.1. Общие сведения	
4.2. Синхронная машина с электромагнитным возбуждением	57
Лабораторная работа № 5. Исследование синхронного генератора	
Лабораторная работа № 6. Исследование трехфазной синхронной	
машины	66
5. Машины постоянного тока	72
5.1. Конструкция коллекторных машин	72
5.2. Принцип действия машины постоянного тока	74
Лабораторная работа № 7. Исследование машины постоянного тока	
независимого возбуждения	81
Лабораторная работа № 8. Исследование машины постоянного	
тока последовательного возбуждения	87
Приложение	
Список литературы	02