УДК 620.3:54(075.8) ББК 30.600.3+24 я73 БЗ4

Печатается по решению кафедры общей и неорганической химии химического факультета Южного федерального университета (протокол № 2 от 16 мая 2022 г.)

Рецензенты:

д. т. н., профессор Южного федерального университета В. В. Петров; к. х. н., доцент Донского государственного технического университета \mathcal{I} л. Е. Пустовая

Баян, Е. М.

Б34 Методы получения наноразмерных оксидных материалов: учебное пособие / Е. М. Баян, М. Г. Волкова; Южный федеральный университет. — Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2022. — 174 с.

ISBN 978-5-9275-4185-0

В учебном пособии описаны основные понятия в области нанонауки, дана классификация наноматериалов и методов их получения, представлены методы синтеза наноразмерных оксидных наноматериалов, рассмотрены основные нанотехнологии, позволяющие формировать структурированные наноматериалы. Представлено соотнесение терминов и определений на русском и английском языках, что будет полезно молодым ученым и исследователям для корректного понимания англоязычных авторов и написания рукописей на английском языке.

Издание предназначено для студентов, изучающих дисциплины «Наноматериалы: синтез, свойства, применение», «Методика постановки химического эксперимента», обучающихся по направлениям подготовки 04.03.01 – «Химия», 04.03.02 – «Химия, физика и механика материалов», 04.05.01 – «Фундаментальная и прикладная химия», а также для студентов, аспирантов, преподавателей классических, технических и педагогических университетов, специалистов, работающих в области оксидных наноматериалов.

УДК 620.3:54(075.8) ББК 30.600.3+24 я73

ISBN 978-5-9275-4185-0

© Южный федеральный университет, 2022 © Баян Е. М., Волкова М. Г., 2022 © Оформление. Макет. Издательство Южного федерального университета, 2022

СОДЕРЖАНИЕ

Введение	5
1. ОСНОВНЫЕ ПОНЯТИЯ И КЛАССИФИКАЦИЯ МЕТОДОВ ПОЛУЧЕНИЯ НАНОМАТЕРИАЛОВ	7
1.1. Основные понятия и история развития нанонауки.	
1.2. Классификация наноматериалов	
1.3. Классификация методов получения	10
наноматериалов	32
1.4. Вопросы и задания для самоконтроля	
2. ФИЗИЧЕСКИЕ И МЕХАНИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ ОКСИДНЫХ НАНОМАТЕРИАЛОВ	
2.1. Физическое осаждение из газовой фазы	44
2.2. Механические методы получения	
2.3. Методы получения, основанные на	
механическом измельчении твердых материалов	51
2.4. Механохимический синтез	54
2.5. Кавитационно-гидродинамический синтез	
2.6. Детонационный синтез, электровзрыв	57
2.7. Импульсная лазерная абляция	
2.8. Вопросы и задания для самоконтроля	
3. ХИМИЧЕСКИЕ МЕТОДЫ ПОЛУЧЕНИЯ	
ОКСИДНЫХ НАНОМАТЕРИАЛОВ	64
3.1. Методы получения оксидных наноматериалов	
из газовой фазы	65
3.1.1. Химическое осаждение из газовой фазы	65
3.1.2. Метод распылительного пиролиза	75
3.2. Получение веществ из растворов	78
3.2.1. Осаждение и соосаждение из растворов	78
3.2.2. Микроэмульсионный метод	82
3.2.3. Золь-гель метод	
3.2.4. Гидротермальный и сольвотермальный синтез	94

3.2.5. Криохимический синтез	97
3.2.6. Синтез горением в жидкой фазе	100
3.2.7. Электрохимические способы синтеза	101
3.2.8. Дополнительные способы активации синтеза	
в растворах: ультразвуковое, микроволновое	
и прочие воздействия	
3.3. Твердофазные химические методы получения	
3.3.1. Метод твердофазных реакций	
3.3.2. Термическое разложение соединений	
3.3.3. Синтез горением	
3.3.4. Кристаллизация из расплавов	
3.4. Вопросы и задания для самоконтроля	
4. НАНОТЕХНОЛОГИИ ДЛЯ ПОЛУЧЕНИЯ ОКСИДЬ	КІЧЬ
НАНОМАТЕРИАЛОВ. ФОРМИРОВАНИЕ	100
ДВУМЕРНЫХ И ТРЕХМЕРНЫХ НАНОСТРУКТУР	
4.1. Литография	
4.1.1. Оптическая литография	
4.1.2. Рентгеновская литография	
4.1.3. Электронно-лучевая литография	
4.1.4. Ионно-лучевая литография	
4.1.5. Нанопечатная (наноимпринт) литография	
4.1.6. Безмасочная литография	
4.2. Самосборка	
4.3. Эпитаксия	141
4.3.1. Молекулярно-лучевая эпитаксия	144
4.3.2. Жидкофазная эпитаксия	147
4.3.3. Газофазная эпитаксия	147
4.3.4. Твердофазная эпитаксия	149
4.4. Атомно-слоевое осаждение	150
4.5. Технология Ленгмюра – Блоджетт	154
4.6. Вопросы и задания для самоконтроля	157
СПИСОК ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЯ	

. . . Ä