

ТЕОРЕТИКО-ЧИСЛЕННЫЕ МЕТОДЫ В КРИПТОГРАФИИ

Учебное пособие

институт фундаментальной подготовки

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Л. В. Кнауб, Е. А. Новиков, Ю. А. Шитов

ТЕОРЕТИКО-ЧИСЛЕННЫЕ МЕТОДЫ В КРИПТОГРАФИИ

Рекомендовано Сибирским региональным учебно-методическим центром высшего профессионального образования для межвузовского использования в качестве учебного пособия для студентов, обучающихся по специальности 090102 «Компьютерная безопасность» и направлениям подготовки 090900 «Информационная безопасность» и 010200 «Математика и компьютерные науки» от 5 июля 2010 г.

Красноярск СФУ 2011 УДК 519.72(075) ББК 32.811я73 К53

Рецензенты:

- **И. О. Богульский**, ведущий научный сотрудник ИВМ СОРАН, д-р физ.-мат. наук, проф.;
- **Ю. В. Шорников**, д-р техн. наук, проф. кафедры АСУ новосибирского государственного технического университета

Кнауб, Л. В.

К53 Теоретико-численные методы в криптографии : учеб. пособие / Л. В. Кнауб, Е. А. Новиков, Ю. А. Шитов. – Красноярск : Сибирский федеральный университет, 2011. – 160 с.

ISBN 978-5-7638-2113-7

Излагаются некоторые элементы теории чисел, отношения сравнимости, модулярная арифметика, степенные вычеты, первообразные корни, индексы, алгоритмы дискретного логарифмирования, китайская теорема об остатках, простые числа и проверка на простоту, разложение чисел на множители и арифметические операции над большими числами. В прил. 1 описаны основы теории групп, колец и полей, а в прил. 2 приведены реализации некоторых алгоритмов, даны тексты программ на языке Borland C++, снабженные подробными комментариями.

Для студентов, обучающихся по специальности 090102 «Компьютерная безопасность» и направлениям подготовки 090900 «Информационная безопасность» и 010200 «Математика и компьютерные науки».

УДК 519.72(075) ББК 32.811я73

Учебное издание

Кнауб Людмила Владимировна, Новиков Евгений Александрович Шитов Юрий Александрович

ТЕОРЕТИКО-ЧИСЛЕННЫЕ МЕТОДЫ В КРИПТОГРАФИИ

Редактор Т. М. Пыжик Компьютерная вёрстка Д. Р. Мифтахутдинова

Подписано в печать 06.06.2011. Печать плоская. Формат 60×84/16 Бумага офсетная. Усл. печ. л. 9,3. Тираж 100 экз. Заказ № 2481

Редакционно-издательский отдел Библиотечно-издательского комплекса Сибирского федерального университета. 660041, г. Красноярск, пр. Свободный, 79

Отпечатано полиграфическим центром Библиотечно-издательского комплекса Сибирского федерального университета. 660041, г. Красноярск, пр. Свободный, 82a

ISBN 978-5-7638-2113-7

© Сибирский федеральный университет, 2011

Ä

ВВЕДЕНИЕ

Основой данного пособия является курс лекций по теоретикочисленным методам в криптографии (ТЧМК). Этот курс предназначен для студентов ИКИТ кафедры прикладной математики и компьютерной безопасности, которые специализируются по информационной безопасности. Лекции по данному предмету формировались с 1996 года. Надо сказать, что в то время литературы на русском языке по таким направлениям, как защита информации, криптографии и математическим методам в криптографии практически не было (в отличии от зарубежных изданий). Поэтому на первом этапе «скелет» курса формировался на элементах теории чисел, алгоритмах арифметических операций с длинными числами и криптографических алгоритмах с открытыми ключами (RSA, схема Диффи – Хеллмана, схема Эль-Гамаля, схема аутентификации Шнора). Постепенно в тексты лекций, начиная с 2000 года, включались численные алгоритмы для решения трудных задач теории чисел. Для этого использовались переводы из зарубежных изданий по соответствующей тематике. В 2003 году Ю. А. Шитов издал методические указания по изучению численных алгоритмов для некоторых задач из теории чисел, которые использовались в курсе лекций по ТЧМК [15].

С 2001 года по направлениям «Криптография и математические методы в криптографии» начинают появляться учебные пособия и монографии на русском языке. В библиографическом списке приведен, по мнению авторов, достаточно полный обзор существующей литературы по этому направлению. В список не включены те учебники, в которых содержатся главы и разделы по арифметическим алгоритмам в теории чисел, так как любое учебное пособие по классическим курсам представляет собой аранжировку давно сформулированных и доказанных результатов, поэтому мы широко используем материалы из учебников, перечисленных в библиографическом списке.

Данное пособие отличается порядком и простотой изложения. Немного больше, чем в других пособиях, уделяется внимание решениям сравнений. Кроме того, при изложении результатов исключаются из рассмотрения доказательства некоторых трудных теорем, поскольку при желании слушатели курса могут ознакомиться с доказательствами в перечисленных источниках. При выборе материала авторы исходили из минимальных требований к начальной подготовке слушателей данного курса. Авторы предлагаемого пособия делают упор на возможность практической реализации изложенных алгоритмов на компьютере. Для некоторых алгоритмов, сформулированных в пособии, в приложении даны тексты программ, реализованных на языке BORLAND C++. Программы реализовал и тестировал М. В. Рыбков – студент группы ВТ 05–04, ИКИТ, СФУ.

Нумерация определений, теорем и соотношений приведены в разделах пособия.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	. 2
НЕКОТОРЫЕ ЭЛЕМЕНТЫ ТЕОРИИ ЧИСЕЛ	. 4
ВЫЧИСЛЕНИЕ НАИБОЛЬШЕГО ОБЩЕГО ДЕЛИТЕЛЯ	
Алгоритм Евклида	
Бинарный алгоритм Евклида	
Расширенный алгоритм Евклида	
Вариант расширенного алгоритма Евклида	
ОТНОШЕНИЕ СРАВНИМОСТИ	. 14
МОДУЛЯРНАЯ АРИФМЕТИКА	. 16
КЛАССЫ	
Полная и приведенная система вычетов	
Функция Эйлера	
СРАВНЕНИЯ ПЕРВОЙ СТЕПЕНИ	. 24
КРИПТОГРАФИЯ С ОТКРЫТЫМ КЛЮЧОМ	
Криптосистема RSA	
Формирование системы RSA	
Алгоритм шифрования	
Алгоритм дешифрования	
Цифровая подпись	
СТЕПЕННЫЕ ВЫЧЕТЫ	. 35
ПЕРВООБРАЗНЫЕ КОРНИ	. 46
ИНДЕКСЫ	
АЛГОРИТМ ДИСКРЕТНОГО ЛОГАРИФМИРОВАНИЯ	
Задача дискретного логарифмирования в конечном поле	
ρ-метод Полларда	
Схема Эль – Гамаля	
Схема Шнорра	
КИТАЙСКАЯ ТЕОРЕМА ОБ ОСТАТКАХ	. 59
СРАВНЕНИЯ СТЕПЕНЕЙ ВЫШЕ ПЕРВОГО	. 63
СРАВНЕНИЯ ПО СОСТАВНОМУ МОДУЛЮ	
ДВУЧЛЕННЫЕ СРАВНЕНИЯ	. 72
СРАВНЕНИЯ ВТОРОЙ СТЕПЕНИ ПО ПРОСТОМУ МОДУЛЮ	
И КВАДРАТИЧНЫЕ ВЫЧЕТЫ	. 76
Алгоритм вычисления символа Якоби	. 84
ВЫЧИСЛЕНИЕ КВАДРАТНЫХ КОРНЕЙ ПО МОДУЛЮ	. 88
Случай простого модуля	
Случай составного модуля	
Вычисление квадратных корней по составному модулю	
ЦИФРОВАЯ ПОДПИСЬ ФИАТА – ШАМИРА	
ПРОСТЫЕ ЧИСЛА	. 100
ПРОВЕРКА НА ПРОСТОТУ	
Пробное деление	. 102

Решето Эратосфена 1	02
Тест на основе малой теоремы Ферма 1	0.
Схема алгоритма на базе малой теоремы Ферма	03
	0
	0
	0
	0:
Построение больших простых чисел и детерминированные	
	0
	0
	08
	08
-	09
	11
	13
	110
	116
	11
Умножение	11
Деление1	118
Модифицированное деление столбиком	118
	19
	19
	22
Приложение 1. ГРУППЫ, КОЛЬЦА, ПОЛЯ 1	23
	23
Кольца. Поля. Многочлены над полем	2
	32
	32
	32
	136
	138
•	139
	4
	4.
	4:
	4
	4
	49
	5
	153
	55
	15′
· · · · · · · · · · · · · · · · ·	