УДК 66.087 ББК 35.35

Березин Н. Б.

Электроосаждение металлов из водных растворов комплексных соединений : монография / Н. Б. Березин, Ж. В. Межевич; М-во образ. и науки России, Казан. нац. исслед. технол. ун-т. – Казань : Изд-во КНИТУ, 2015. – 168 с.

ISBN 978-5-7882-1890-8

Рассмотрены три направления в электрохимии: импульсный электролиз, комлексообразование в электрохимических процессах, электроосаждение сплавов. Приведены сведения по стадийному анодному формированию и катодному восстановлению комплексов металлов.

Предназначена для бакалавров направления подготовки 18.03.01 – «Химическая технология», профиль «Технология электрохимических производств», аспирантов, а также может быть полезна для тех, кто занимается проблемами в области электрохимии.

Подготовлена на кафедре «Технология электрохимических производств».

Печатается по решению редакционно-издательского совета Казанского национального исследовательского технологического университета

Рецензенты: д-р техн. наук, проф. каф. химии и инженерной экологии в строительстве Казанского государственного архитектурно-строительного университета *P. T. Ахметова*

ген. дир. ЗАО НПЦ «Химтехно» д-р техн. наук О. В. Угрюмов

ISBN 978-5-7882-1890-8

- © Березин Н. Б., Межевич Ж. В., 2015
- © Казанский национальный исследовательский технологический университет, 2015

СОДЕРЖАНИЕ

Введение	3
1. ИМПУЛЬСНЫЙ ЭЛЕКТРОЛИЗ	4
1.1. Некоторые теоретические аспекты импульсного	
электролиза	8
1.2. Роль импульсного тока при электроосаждении	
металлов	17
1.2.1. Электроосаждение цинка и его сплавов	21
1.2.2. Электроосаждение никеля и его сплавов	23
1.2.3. Электроосаждение хрома	24
2. КОМПЛЕКСООБРАЗОВАНИЕ	27
В ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССАХ	26
2.1. Общие закономерности восстановления комплексов	28
металлов	20
2.2. Состояние и электрохимическое поведение комплексов	36
металлов	30
2.3. Состояние и поведение глицина в водных растворах.	
Роль глицинатных комплексов при электроосаждении	40
металлов и сплавов	42
2.4. Кинетика и механизм разряда комплексов цинка (II)	50
2.5. Кинетика и механизм электрохимического	~ 0
восстановления комплексов хрома (III)	58
2.6. Кинетика и механизм электрохимического	
восстановления комплексов никеля (II)	62
3. ЭЛЕКТРООСАЖДЕНИЕ СПЛАВОВ	66
3.1. Электроосаждение сплава цинк-хром	71
3.2. Электроосаждение сплава никель-фосфор	73
4. РОЛЬ ГЕТЕРОЯДЕРНЫХ И ГЕТЕРОЛИГАНДНЫХ	
КОМПЛЕКСОВ В ПРОЦЕССАХ ЛЕГИРОВАНИЯ	
ГАЛЬВАНИЧЕСКИХ ПОКРЫТИЙ.	78
5. ИССЛЕДОВАНИЕ ПРОЦЕССОВ	
КОМПЛЕКСООБРАЗОВАНИЯ	115
6. ИССЛЕДОВАНИЕ КИСЛОТНОСТИ В ЗОНЕ	
ЭЛЕКТРОХИМИЧЕСКОЙ РЕАКЦИИ	116
7. ИССЛЕДОВАНИЕ ПОВЕРХНОСТНОГО	
КОМПЛЕКСООБРАЗОВАНИЯ	118
8. АНОДНОЕ ФОРМИРОВАНИЕ И КАТОДНОЕ	
ВОССТАНОВЛЕНИЕ КОМПЛЕКСОВ МЕТАЛЛОВ	120
Список использованных источников	124