Б. П. Куликов Ю. И. Сторожев

Пылегазовые выбросы алюминиевых электролизеров с самообжигающимися анодами

Ä

Монография

Политехнический институт

Министерство образования и науки Российской Федерации Сибирский федеральный университет

Б. П. Куликов, Ю. И. Сторожев

ПЫЛЕГАЗОВЫЕ ВЫБРОСЫ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ С САМООБЖИГАЮЩИМИСЯ АНОДАМИ

Монография

Красноярск СФУ 2012 УДК 669.7.13.7 ББК 24.123 К903

Рецензенты:

В. В. Леонов, д-р хим. наук, проф. кафедры «Композиционные материалы и физико-химия металлургических процессов» СФУ;

 $P.\ \Gamma.\ X$ лебопрос, д-р физ.-мат. наук, проф., гл. науч. сотрудник лаборатории теоретических исследований института биофизики КНЦ СО РАН

Куликов, Б. П.

К903

Пылегазовые выбросы алюминиевых электролизеров с самообжигающимися анодами: монография / Б. П. Куликов, Ю. И. Сторожев. – Красноярск: Сиб. федер. ун-т, 2012. – 268 с.

ISBN 978-5-7638-2530-5

В монографии дана характеристика пылегазовых выбросов производства алюминия электролизом, описан процесс улавливания выбросов вторичными укрытиями электролизеров, показаны способы и устройства для их термического обезвреживания.

Выполнен анализ развития конструкций газоотсасывающих сетей, изложены современные тенденции их совершенствования. Рассмотрены методы и аппаратурное оформление очистки пылегазовых выбросов. Приведены сведения по освоенным в промышленном масштабе вариантам переработки отходов алюминиевого производства, образующихся при улавливании и очистке газообразных выбросов электролизеров с самообжигающимися анодами и верхним токоподводом.

Предназначена для научных и инженерно-технических работников, специалистов, занимающихся проблемами экологизации алюминиевого производства, и для студентов металлургических специальностей.

УДК 669.713.7 ББК 24.123

ISBN 978-5-7638-2530-5

© Сибирский федеральный университет, 2012

• •

ВВЕДЕНИЕ

Производственный цикл многих промышленных предприятий характеризуется образованием большого количества твердых, жидких и газообразных отходов. Промышленные отходы представляют серьезную экологическую опасность для регионов, расположенных в непосредственной близости от источников выбросов. Значительный вклад в загрязнение окружающей среды вносит алюминиевая промышленность. На производство 1 т электролитического алюминия расходуется более 2,5 т разнообразного сырья, большая часть которого в процессе производства превращается в пылегазообразные соединения, негативно влияющие на окружающую среду и здоровье людей [1].

Алюминиевая промышленность является одной из наиболее динамично развивающихся отраслей отечественной экономики. В ее развитии прослеживается характерная тенденция, обусловленная увеличением объемов производства, единичной мощности электролизеров и концентрации производства. В этих условиях повышается объем выбросов загрязняющих веществ в окружающую среду. Отходы алюминиевого производства составляют около 20 % всех отходов, образующихся при производстве цветных металлов в стране [2].

Специфика производства алюминия в России обусловлена эксплуатацией трех типов электролизеров: с самообжигающимися анодами и верхним токоподводом, самообжигающимися анодами и боковым токоподводом и обожженными анодами. Причем доминирующим является производство алюминия в электролизерах с самообжигающимися анодами или анодами Содерберга, в которых выпускается около 85 % отечественного металла. Эти заводы расположены в основном на Урале и в Сибири.

Зарубежная алюминиевая промышленность практически завершила переход на более прогрессивный способ получения алюминия в электролизерах с предварительно обожженными анодами. Среди прочих преимуществ данная технология обеспечивает более высокие показатели по экологической безопасности производства. Это выражается в практическом отсутствии ряда отходов, характерных для технологии самообжигающихся анодов, таких как пыль электрофильтров, шлам газоочистки, хвосты флотации, а также в значительно меньших выбросах в окружающую среду фтористых, смолистых веществ и неорганической пыли. В частности, достигнутые на зарубежных заводах показатели экологической безопасности производства характеризуются суммарным выбросом фтора в пределах 1–2 кг на 1 тонну алюминия. На российских заводах этот показатель в несколько раз выше [3, 4].

Несмотря на это, технические возможности электролизеров с самообжигающимися анодами еще далеко не исчерпаны. На рубеже XX–XXI вв.

Введение

отечественная алюминиевая промышленность совершила стремительный рывок в направлении интенсификации производства и обеспечения его экологической безопасности. За последние 10–15 лет произошли кардинальные изменения на всех переделах, связанных с производством алюминия в электролизерах с самообжигающимися анодами.

К наиболее значимым из них относятся:

- применение сухой анодной массы;
- использование электролитов с пониженным криолитовым отношением и новой рецептурой добавок (CaF₂ и MgF₂);
- наращивание единичной мощности электролизеров за счет повышения силы тока электролизных серий;
- применение сухой газоочистки;
- внедрение новых материалов и технологий при капитальном ремонте электролизеров;
- повышение качества алюминия и его сплавов, расширение номенклатуры товарной продукции;
- использование новых видов оборудования в электролизных корпусах, цехах анодной массы и при капитальном ремонте электролизеров;
- внедрение АСУТП на всех стадиях технологического процесса.

Реализация перечисленных нововведений привела к количественным и качественным изменениям в технологии электролиза алюминия, производстве анодной массы, капитальном ремонте электролизеров, литейно-прокатном производстве. Одновременно с модернизацией основного производства на предприятиях совершенствуются системы улавливания вредных выбросов, способы и устройства для их термического обезвреживания, аппаратура и способы очистки электролизных газов, разрабатываются новые способы утилизации отходов, направленные на снижение экологической опасности электролизного производства алюминия.

Согласно работе [5] реализация новейших достижений в области совершенствования алюминиевого производства позволяет сделать прогноз по поводу того, что суммарная эмиссия загрязняющих веществ в окружающую среду отечественными алюминиевыми заводами в течение ближайших 10–15 лет может быть уменьшена на 15–20 %.

Для более эффективной работы в части снижения негативного воздействия алюминиевых заводов на экосистемы прилегающих регионов приоритетное значение приобретают вопросы организации улавливания и удаления анодных газов, их термического обезвреживания, очистки от пыли и вредных составляющих, а также переработки пылевых отходов алюминиевого производства. Результаты исследований по перечисленным направлениям изложены в данной монографии.

ОГЛАВЛЕНИЕ

В	ВЕД	ЕНИЕ	3
1.	XA	РАКТЕРИСТИКА И УЛАВЛИВАНИЕ ПЫЛЕГАЗОВЫХ ВЫБРОСОВ	5
	1.1.	Характеристика пылегазовых выбросов	5
		1.1.1. Классификация, состав и параметры анодных газов	
		1.1.2. Смолистые вещества в выбросах	
		1.1.3. Парниковые газы	
		1.1.4. Фтористые и сернистые соединения	
	1.2.	Улавливание пылегазовых выбросов.	
		1.2.1. Конструкция газосборного устройства электролизера	
		1.2.2. Вторичное укрытие электролизера и его математическое моделирование	26
		1.2.3. Разработка конструкции вторичного укрытия рабочего пространства	22
		электролизера с анодом Содерберга	33
		1.2.5. Влияние вторичного укрытия на содержание загрязняющих веществ в	57
		воздухе рабочей зоны	40
		1.2.6. Температура поверхности вторичного укрытия	
	1 3	Безгорелочный газосборный колокол	
		Улавливание выбросов с поверхности самообжигающегося анода	
	1.4.	улавливание выоросов с поверхности самооожигающегося анода	4/
2.		РМИЧЕСКОЕ ОБЕЗВРЕЖИВАНИЕ ПЫЛЕГАЗОВЫХ ВЫБРОСОВ	
		Предпосылки для разработки новых горелочных устройств	
	2.2.	Моделирование горелочных устройств	
		2.2.1. Математическая модель процессов в горелочном устройстве	
		2.2.2. Щелевая горелка КрАЗа	62
		Моделирование пылеосадительной камеры	
	2.4.	Разработка нового горелочного устройства	68
	2.5.	Теплотехнические испытания и внедрение нового горелочного устройства	72
	2.6.	Модернизация существующих щелевых горелок	
		2.6.1. Щелевая горелка с тепловым экраном	
		2.6.2. Щелевая горелка с внутренней теплоизоляцией	
		2.6.3. Щелевая горелка с деформируемыми стенками	
		2.6.4. Щелевая горелка корпуса БрАЗа	82
	2.7.	Мониторинг температуры и разрежения при сжигании анодных газов в горелочных устройствах	85
	2.8.	Централизованное сжигание анодных газов в концентрированном состоянии	
_			
3.		ВООТСАСЫВАЮЩИЕ СЕТИ КОРПУСОВ ЭЛЕКТРОЛИЗА	
	3.1. 3.2	Назначение и характеристики газоходов	102
	3.∠. 3.3	Исследование подкорпусной газоотсасывающей сети	106
		Усовершенствование газоотсасывающей сети	
	٥. ١.	3.4.1. Выравнивание объемов газоотсоса	
		3.4.2. Симметричная конструкция газоотсасывающей сети	
		3.4.3. Газоотвод с продольной стороны электролизера	

4. ОЧИСТКА ПЫЛЕГАЗОВЫХ ВЫБРОСОВ	122
4.1. Очистка пылегазовой смеси от твердых частиц в электрофильтрах	122
4.1.1. Устройство электрофильтров	
4.1.2. Принцип работы электрофильтров	
4.1.3. Возгорания в электрофильтрах и газоходах	
4.1.4. Эффективность очистки газов в электрофильтрах	
4.1.5. Характеристики электрофильтров	
4.2. Очистка выбросов в абсорберах	
4.2.1. Улавливание газов электролизного производства содовым раствором	
4.2.2. Аппараты мокрой очистки газов	
4.2.3. Система орошения и откачки растворов	
4.2.4. Улавливание пылегазовой смеси в одну стадию	
4.3. Очистка выбросов в адсорберах	
4.3.1. Адсорбционная очистка газов электролизного производства	
4.3.2. Сухая очистка газов алюминиевого производства за рубежом	
4.3.4. Эффективность работы установок сухой газоочистки	
4.3.5. Особенности сухой очистки электролизных газов	
4.3.6. Использование фторированного глинозема в электролизе	
4.4. Децентрализованная очистка газов от электролизеров	
4.5. Баланс фтора в электролизе алюминия	
4.5.1. Идентификация объектов прохождения фтора	
4.5.2. Методика укрупненного баланса фтора	
4.6. Баланс серы в производстве алюминия электролизом	186
5. УТИЛИЗАЦИЯ ТВЕРДОФАЗНОЙ СОСТАВЛЯЮЩЕЙ ПЫЛЕГАЗОВЫХ ВЫБРОСОВ	101
5.1. Состав и характеристика пыли и шлама газоочистки	
5.1.1. Пыль электрофильтров5.1.2. Шлам газоочистки	
5.2. Шламовые поля алюминиевых заводов	
5.3. Утилизация твердофазных отходов газоочистки	208
5.3.1. Переработка отходов с возвратом полезных компонентов	200
в производство алюминия	
3.3.2. Переработка отлодов в емежных отраслях промышленности	ر 1 کے
ЗАКЛЮЧЕНИЕ	233
СПИСОК ЛИТЕРАТУРЫ	237
Приложение 1. Расчет баланса фтора	248
Приложение 2. Расчет баланса серы	255
110mH0/M01m0 4. 1 a0 TO 1 Valianoa 00001	۷.).