Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова

С. П. Зимин Е. С. Горлачев

НАНОСТРУКТУРИРОВАННЫЕ ХАЛЬКОГЕНИДЫ СВИНЦА

Ярославль 2011

УДК 539.21:541.182 ББК В 379 3 62

3 62

Рекомендовано Редакционно-издательским советом университета в качестве научного издания.

Рецензенты:

Гременок В. Ф., д-р физ.-мат. наук, заведующий лабораторией физики твердого тела ГО «НПЦ НАН Беларуси по материаловедению»; кафедра физики и прикладной математики Владимирского государственного университета имени А. Г. и Н. Г. Столетовых

Зимин, С. П. Наноструктурированные халькогениды свинца: монография / С. П. Зимин, Е. С. Горлачев; Яросл. гос. ун-т им.

П. Г. Демидова. – Ярославль: ЯрГУ, 2011. – 232 с. ISBN 978-5-8397-0861-7

В монографии излагается современное состояние науки о формировании, исследовании и свойствах наноструктурированных полупроводников халькогенидов свинца PbX (X = Te, Se, S). Рассмотрены размерные эффекты в изучаемых материалах, подробно обсуждены новые подходы создания низкоразмерных систем на основе электрохимических и плазменных процессов.

Книга предназначена для специалистов в области микро- и наноэлектроники, полупроводникового материаловедения, физики твердого тела, для студентов и аспирантов соответствующих специальностей.

Ил. 105. Библиогр.: 353 назв.

Издание осуществлено при финансовой поддержке Аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы на 2009–2011 годы (проекты 2.1.1/466 и 2.1.1/13083)».

> УДК 539.21:541.182 ББК В 379

© Ярославский государственный ISBN 978-5-8397-0861-7 университет им. П. Г. Демидова, 2011

содержание

Введение	7
Глава 1. Физические характеристики халькогенидов свинца в объемном состоянии. Методы синтеза нанокристаллов и нанонитей	11
1.1. Свойства объемных полупроводников PbTe, PbSe, PbS	11
1.2. Методы формирования низкоразмерных систем на основе халькогенидов свинца	15
1.2.1. Формирование монодисперсных нанокристаллов халькогенидов свинца	
1.2.1.2. Синтез квантовых точек в стеклянных матрицах	
1.2.1.3. Формирование квантовых точек в пористых матрицах (цеолиты, золь-гели)1.2.1.4. Синтез квантовых точек гидротермальным	27
методом1.2.1.5. Получение коллоидных монодисперсных нанокристаллов халькогенидов свинца	29
в водных растворах1.2.1.6. Получение коллоидных монодисперсных нанокристаллов халькогенидов свинца	32
методом высокотемпературного синтеза 1.2.1.7. Выращивание квантовых точек халькогенидов свинца методом	34
молекулярно-лучевой эпитаксии	45
1.2.2. Формирование нанонитей халькогенидов свинца 1.2.2.1. Коллоидный синтез нанонитей	
нанонитей1.2.2.3. Химическое осаждение	

1.2.2.4. Эпитаксиальный рост нанонитей	
халькогенидов свинца по механизму	
«пар – жидкость – кристалл»	64
1.2.2.5. Электрохимическое осаждение	66
1.2.2.6. Принц-технология	68
Глава 2. Размерные эффекты при переходе халькогенидов	
свинца в нанометровый диапазон	71
2.1. Величина боровского радиуса экситона	
в халькогенидах свинца	73
2.2. Ширина запрещенной зоны наноструктурированных	
халькогенидов свинца	79
2.3. Изменение знака температурной зависимости	
ширины запрещенной зоны	87
2.4. Изменение диэлектрической функции	
для халькогенидов свинца	89
2.5. Теплопроводность наноструктурированных	
халькогенидов свинца	90
2.6. Осцилляции кинетических коэффициентов	
в квантовых ямах	95
2.7. Изменение постоянной решетки	98
2.8. Размерный эффект в испарении и кристаллизации	101
2.9. Размерный эффект в просветлении	
2 10 H	
2.1 0. Другие размерные эффекты	
2.10. Другие размерные эффекты в халькогенидах свинца	105
в халькогенидах свинца	105
в халькогенидах свинца	108
в халькогенидах свинца	108
в халькогенидах свинца	108 109
в халькогенидах свинца	108 109 119

. Ä

. Ä

Глава 3. Электрохимические и плазменные методы	132
наноструктурирования халькогенидов свинца	132
3.1. Формирование наноструктурированных пористых	
слоев халькогенидов свинца методом анодной электрохимической обработки	132
	132
3.1.1. Методика проведения анодной электрохимической	
обработки слоев халькогенидов свинца	124
на кремниевых подложках	134
3.1.2. Морфология пористых пленок и нанопористых	
многослойных систем PbX на кремнии	
3.1.2.1. Пористые слои PbTe	
3.1.2.2. Пористые слои PbSe	143
3.1.3. Структурные и физические параметры	
наноструктурированных пористых слоев	
халькогенидов свинца	148
3.1.3.1. Величина пористости и геометрические	
параметры пор	148
3.1.3.2. Модификация элементного состава,	
электрических и оптических характеристик	
при формировании нанопористых халькогенидов	
свинца с низкоразмерными структурами	154
3.2. Формирование наноструктурированных	
халькогенидов свинца методами	1(2
плазменной обработки	102
3.2.1. Методика плазменной обработки пленочных	
структур со слоями халькогенидов свинца	162
3.2.2. Скорости распыления халькогенидов свинца	
в аргоновой плазме	164
3.2.3. Эффект микромаскирования при плазменной	
обработке эпитаксиальных пленок РbX	174
•	1,.
3.2.4. Морфологические свойства наноструктур PbX,	102
формируемых при обработке в аргоновой плазме	102
3.2.5. Исследование влияния внешних воздействий	
на параметры наноструктур халькогенидов свинца,	40-
получаемых методом плазменной обработки	186
5	

. **Ä**

. Ä

3 2 6 Формирование массивов нанонитей халькогенилов	
3.2.6. Формирование массивов нанонитей халькогенидов	
1 1	
свинца под маской травления методом плазменной	
* * * * * * * * * * * * * * * * * * *	102
обработки	192
•	199
Заключение	199
Питопотупо	200

. **Ä**

 $\boldsymbol{\dot{\cdot}} \quad \boldsymbol{\dot{\cdot}} \quad \boldsymbol{\dot{\cdot}} \quad \boldsymbol{\dot{\cdot}} \quad \boldsymbol{\dot{\dot{\cdot}}} \quad \boldsymbol{\ddot{\dot{A}}}$