УДК 621.38 ББК 32.85 М 18

Репензенты:

доктор технических наук, профессор кафедры конструирования электронных средств Таганрогского технологического института Южного федерального университета *Рындин Е. А.*; доктор физико-математических наук, профессор кафедры теоретической физики Таганрогского государственного педагогического института *Жорник А. И.*

Монография подготовлена и издана в рамках национального проекта «Образование» по «Программе развития федерального государственного образовательного учреждения «Южный федеральный университет» на 2007–2010 гг.»

Малюков С.П.

М18 Физико-технологические основы создания электронных устройств с высокоплотной записью информации: монография / С. П. Малюков. – Ростов н/Д: Изд-во ЮФУ, 2009. – 168 с.: ил. 57. ISBN 978-5-9275-0668-2

В книге рассмотрены современные физико-технологические основы создания электронных устройств с высокоплотной записью информации.

Предназначена для научных работников, преподавателей вузов, аспирантов, магистрантов, занимающихся конструированием и технологией устройств накопления информации.

ISBN 978-5-9275-0668-2

УДК 621.38 ББК 32.85

© ТТИ ЮФУ, 2009 © С.П. Малюков, 2009 © Южный федеральный университет, 2009

ОГЛАВЛЕНИЕ

ГЛАВА 1. АНАЛИЗ СОВРЕМЕННЫХ ПРОБЛЕМ	
ТЕХНОЛОГИИ ЭЛЕКТРОННЫХ УСТРОЙСТВ С	
ВЫСОКОПЛОТНОЙ ЗАПИСЬЮ ИНФОРМАЦИИ	1
1.1. Современное состояние элементов магнитной записи и	
материалов, используемых в их производстве	3
1.2. Тонкопленочные магнитные головки	7
1.3. Комбинированные магнитные головки	12
1.4. Магниторезистивные го ловки	15
ГЛАВА 2. ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ	
НАПРЯЖЕНИЙ В ПЛОСКИХ СПАЯХ	.27
2.1. Метод расчета температурных полей в спаях стекловидног	го
диэлектрика с металлом	28
2.2. Модель релаксации напряжений	39
2.2.1. Расчет релаксации напряжения в нестабилизированном	
стекле при несоблюдении принципа термореологической простоты	39
2.3. Метод расчета напряжений в несимметричных спаях стекл	та с
упругим материалом	52
2.3.1. Расчет напряжений в спаях стекла со стеклом	56
2.4. Исследование напряжений в плоских спаях стекол с	
ферритами	61
2.4.1. Исследование механических напряжений в тройных	
спаях видеоголовки	77

2.5. Исследование механических напряжений в
двухслойной структуре ВГ
2.6. Динамические исследования макронапряжений пленок
пермаллоя
2.6.1. Исследование магнитных напряжений в
двухслойной структуре ВГ
ГЛАВА 3. РАЗРАБОТКА МОДУЛЕЙ КОНТРОЛЯ
ПАРАМЕТРОВ ФУНКЦИОНИРОВАНИЯ МАГНИТНЫХ
ГОЛОВОК
3.1. Математические модели зависимости свойств материала от
его состава для изготовления МГ
3.1.1. Математическая модель синтеза стекловидных
диэлектриков для спаев стекла с титаном
3.1.2. Математическая модель синтеза стекловидных
диэлектриков при формировании соединения стекла с
ферритом
3.1.3. Математическая модель прессования
горячепрессованных ферритов
3.2. Алгоритм формирования математической модели синтеза
стекловидных диэлектриков для спаев стекла с титаном115
3.3. Автоматизированные измерительные комплексы для
контроля свойств магнитных сплавов
3.3.1. Процедуры моделирования системы «носитель
информации – магнитная головка»

3.3.2. Динамическое взаимодействие магнитной головки с
лентой
3.3.3. Разработка эвристического алгоритма определения
оптимального взаимодействия МГ с носителем информации 135
3.4. Применение методов генетического поиска для определения
оптимальных характеристик магнитных головок
3.4.1. Структура внутренних данных генетических алгоритмов
3.4.2. Структура генетического алгоритма142
3.4.3. Работа программного модуля
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ