

Г. Я. Шайдуров

Ä

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Г. Я. Шайдуров

ОСНОВЫ ТЕОРИИ И ПРОЕКТИРОВАНИЯ РАДИОТЕХНИЧЕСКИХ СИСТЕМ

Рекомендовано учебно-методическим объединением вузов Российской Федерации по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению 210300 «Радиотехника»

> Красноярск СФУ 2010

Ä

УДК 621.396.96 (07) ББК 32.84я73 Ш12

Рецензенты:

- Г. С. Шарыгин, доктор технических наук, профессор заведующий кафедрой радиотехнических систем Томского государственного университета систем управления и радиоэлектроники;
- А. А. Спектор, доктор технических наук, профессор заведующий кафедрой теоретических основ радиотехники Новосибирского государственного технического университета;
- В. К. Орлов, кандидат технических наук, доцент кафедры радиотехнических систем Санкт-Петербургского электротехнического университета ЛЭТИ им. В. И. Ульянова (Ленина)

Шайдуров Г. Я.

Ш12 Основы теории и проектирования радиотехнических систем : учеб. пособие / Г. Я. Шайдуров. – Красноярск : Сибирский федеральный университет, 2010. – 283 с.

ISBN 978-5-7638-2047-8

Изложены системные проблемы создания сложных радиотехнических комплексов, теоретические основы анализа и синтеза оптимальных систем, приведены основы энергетических расчетов радиоканалов передачи и извлечения информации в различных диапазонах частот.

Содержание соответствует требованиям одноименного курса, читаемого инженерам и магистрам радиотехнических специальностей.

УДК 621.396.96(07) ББК 32.84я73

Учебное издание

Шайдуров Георгий Яковлевич

ОСНОВЫ ТЕОРИИ И ПРОЕКТИРОВАНИЯ РАДИОТЕХНИЧЕСКИХ СИСТЕМ

Учебное пособие

Редактор А. В. Прохоренко Компьютерная верстка: А. Б. Филимонова

Подписано в печать 20.10.2010. Печать плоская. Формат $60\times84/16$ Бумага офсетная. Усл. печ. л. 16,16. Тираж 500 экз. Заказ № 1432

Редакционно-издательский отдел БИК Сибирского федерального университета 660041, г. Красноярск, пр. Свободный, 79

Отпечатано полиграфическим центром БИК 660041, г. Красноярск, пр. Свободный, 82а

© Сибирский федеральный университет, 2010

ISBN 978-5-7638-2047-8

• •

ОГЛАВЛЕНИЕ

Список сокращений	6
1. ВВЕДЕНИЕ В СИСТЕМНЫЙ АНАЛИЗ И ОПТИМАЛЬНАЯ	
ОРГАНИЗАЦИЯ РАЗРАБОТОК НОВОЙ РАДИОЭЛЕКТРОННОЙ	
ТЕХНИКИ	10
1.1.Основные понятия	11
1.2. Стратегия разработок	17
1.3. Оптимальное проектирование	19
1.4. Обобщенный эвристический метод	24
1.4.1. Информационная база	
1.4.2. Структура и процедуры метода	26
1.5. Проблемы создания системотехнических САПР	
в области радиоэлектроники	33
1.5.1. Пример системной постановки задачи проектирования	
нового поколения станций тропосферной радиосвязи (ТРС)	37
Список литературы к главе 1	40
Контрольные вопросы и задания	40
2. МАТЕМАТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА	
РАДИОСИСТЕМ	41
2.1. Характеристики передачи линейной системы	41
2.2. Амплитудно-частотная характеристика системы	43
2.3. Передаточная функция системы	
2.4. Переходная и импульсная характеристики	48
2.5. Взаимная связь передаточных характеристик системы	
2.6. Представление случайных процессов	
2.6.1. Введение	53
2.6.2. Детерминированные функции, ортогональные представле-	
ния	56
2.6.3. Задание случайных процессов	
2.6.4. Представление выборочных функций случайных процессов	01
рядами	64
2.7. Анализ и синтез оптимальных систем методом пространства	01
состояний	69
Список литературы к главе 2	
Контрольные вопросы и задания	
3. ОСНОВНЫЕ ЭНЕРГЕТИЧЕСКИЕ СООТНОШЕНИЯ	/ -
В РАДИОКАНАЛАХ ПЕРЕДАЧИ И ИЗВЛЕЧЕНИЯ	
ИНФОРМАЦИИ	75
3.1. Зоны излучения дипольных источников	
3.2. Энергетические соотношения для канала передачи информа-	13
ши прямой видимости без учета влияния Земли	79
шии полион ридиности ось учета влияния эсили	17

3.3. Энергетические соотношения для радиолокационного канала	ì
прямой видимости без учета влияния Земли	
3.4. Энергетические соотношения для радиоканалов передачи	
информации с учетом влияния Земли в длинноволновом	
диапазоне	87
3.5.Пример расчета радиоканала передачи информации	
декаметрового диапазона	90
3.6. Особенности построения и энергетических расчетов	
тропосферных линий радиосвязи	102
Список литературы к главе 3	
Контрольные вопросы и задания	
4.ЭНЕРГЕТИЧЕСКИЙ РАСЧЕТ СПУТНИКОВЫХ ЛИНИЙ	111
4.1. Особенности энергетики спутниковых линий. Цели	
и задачи расчета	111
4.2. Уравнения связи для двух участков	
4.3. Поглощение энергии сигнала в атмосфере	
4.4. Потери из-за рефракции и неточности наведения антенны	
на ИСЗ	120
4.5. Фазовые эффекты в атмосфере	
4.6. Потери из-за несогласованности поляризации антенн	
4.7. Деполяризация сигналов в атмосфере	
4.8. Шумы атмосферы, планет и приемных систем	
Список литературы к главе 4	
Контрольные вопросы и задания	
5. СКАЛЯРНЫЙ СИНТЕЗ ОПТИМАЛЬНОЙ СТРУКТУРЫ	
И ПАРАМЕТРОВ РАДИОСИСТЕМ	137
5.1. Постановка задач	
5.2. Методы скалярной оптимизации	
5.3. Примеры скалярного синтеза оптимальных сигналов	
и систем	146
5.3.1. Задача нахождения формы сигнала, максимизирующего	
скорость передачи дискретных сообщений	146
5.3.2. Оптимизация формы огибающей радиоимпульса	
по минимуму внеполосных излучений	148
5.3.3. Синтез оптимальной пары передающий	
фильтр-приемник	153
5.3.4. Задача параметрической минимизации стоимости	
радиолокатора	161
5.4. Адаптивные и обучающиеся системы	
Список литературы к главе 5	
Контрольные вопросы и задания	
, , , , , , , , , , , , , , , , , , , ,	

Ä

6 ОСНОВЫ ТЕОРИИ ОБНАРУЖЕНИЯ	
РАДИОЛОКАЦИОННЫХ СИГНАЛОВ	171
6.1. Функция правдоподобия и достаточный приемник	171
6.2. Функция правдоподобия для случая аддитивной смеси	
сигнала с гауссовым шумом	174
6.3. Статистические критерии обнаружения радиотехнических	
сигналов	178
6.4. Оптимальная фильтрация	181
6.5. Корреляционный прием	
Список литературы к главе 6	186
Контрольные вопросы и задания	186
7. ОСНОВЫ СТАТИСТИЧЕСКОЙ ТЕОРИИ ОЦЕНОК	
ПАРАМЕТРОВ РАДИОСИГНАЛА И СИНТЕЗ ОПТИМАЛЬНЫХ	
ИЗМЕРИТЕЛЕЙ	187
7.1. Постановка задачи	187
7.2. Критерии оптимальности и общие алгоритмы получения	
оценок параметров сигнала	188
7.3. Оптимальный измеритель амплитуды	
7.4. Оптимальный измеритель фазы	
7.5. Оптимальный измеритель времени запаздывания	198
Список литературы к главе 7	202
Контрольные вопросы и задания	202
8. ОПТИМАЛЬНОЕ ПРОЕКТИРОВАНИЕ РТС	
ПО СОВОКУПНОСТИ ПОКАЗАТЕЛЕЙ КАЧЕСТВА	203
8.1. Формулировка исходных данных для задачи оптимального	
проектирования	203
8.2. Методы отыскания нехудших систем. Диаграммы обмена	206
8.3. Методы уменьшения размерности диаграммы обмена	211
8.4. Связь диаграмм обмена системы и ее подсистем	212
8.5. Задачи оптимизации обнаружителя сигнала по двум	
и трем показателям качества	212
Список литературы к главе 8	216
Контрольные вопросы и задания	216
ЗАКЛЮЧЕНИЕ	217
ПРИЛОЖЕНИЕ 1. НОВЫЕ НАУКОЕМКИЕ РЕСУРСОСБЕРЕГАЮ-	
ЩИЕ ТЕХНОЛОГИИ, ИННОВАЦИОННЫЕ ПРОЕКТЫ –ОСНОВА	
РАЗВИТИЯ ЭКОНОМИКИ	226
ПРИЛОЖЕНИЕ 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ	
ПРИЛОЖЕНИЕ 3. ЭСКИЗНЫЙ ПРОЕКТ	
ПРИЛОЖЕНИЕ 4 ТЕХНИЧЕСКИЙ ПРОЕКТ	272

ГЕОРГИЙ ЯКОВЛЕВИЧ ШАЙДУРОВ

Доктор технических наук, профессор, Заслуженный деятель науки и техники РФ, действительный член Международной Академии Информатизации, лауреат Всероссийского конкурса «Профессиональные инженеры России», изобретатель СССР.

Родился в Красноярском крае. В 1957 г. окончил Радиотехнический факультет Томского политехнического института. Многие годы работал в промышленности. С 1987 г. – заведующий кафедрой радиотехнических систем Красноярского государственного технического университета. С 2009 г. - профессор кафедры Радиоэлектрон-

ных систем Сибирского федерального университета. Автор более 300 научных работ, в том числе 60 патентов на изобретения.

Руководитель научной школы СФУ по радиолокации, навигации и радиомониторингу.

Генеральный директор научно-технического центра радиоэлектроники «Мезон».

Область научных интересов – системы передачи и извлечения информации, радиомониторинг объектов чрезвычайных ситуаций, геофизическое приборостроение, океанология.