Ä

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РЕНТГЕНОСПЕКТРАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ МАТЕРИАЛОВ НА ОСНОВЕ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ

Учебное пособие

Ростов-на-Дону – Таганрог Издательство Южного федерального университета 2019

Ä

УДК 535.37(075.8) ББК 22.344я73 Я 51

Печатается по решению кафедры физики наносистем и спектроскопии физического факультета Южного федерального университета (протокол № 18 от 2 апреля 2019 г.)

Рецензенты:

доктор физико-математических наук, главный научный сотрудник Южного научного центра Российской академии наук Ю. Ф. Мигаль; кандидат физико-математических наук, ведущий научный сотрудник НИИ физики Южного федерального университета В. Г. Власенко

Авторский коллектив:

Г. Э. Яловега, М. И. Мазурицкий, А. Т. Козаков, В. А. Шматко, М. А. Кременная

Рентгеноспектральные методы исследования матери-Я 51 алов на основе синхротронного излучения: учебное пособие / Г. Э. Яловега [и др.]; Южный федеральный университет. – Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2019. – 146 с.

ISBN 978-5-9275-3202-5

Учебное пособие содержит изложение материала, входящего в учебную программу курсов «Специальный физический практикум», «Физика рентгеновских лучей», «Синхротронное излучение в исследовании материалов», изучаемых студентами специальностей «Физика конденсированного состояния», «Физика», «Физика и технология функциональных материалов» физического факультета и НИИ физики Южного федерального университета. Содержит контрольные вопросы и проектные задания.

Предназначено для студентов, которые обучаются по программам бакалавриата и магистратуры в области физики конденсированного состояния, материаловедения, нанотехнологий. Создано при поддержке Южного федерального университета (ВнГр-07/2017-30).

УДК 535.37(075.8) ББК 22.344я73

ISBN 978-5-9275-3202-5

© Южный федеральный университет, 2019 © Оформление. Макет. Издательство Южного федерального университета. 2019

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ		5
	ТОЧНИКИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ	
МО	НОХРОМАТОРЫ, ДЕТЕКТОРЫ	8
1.1.	Источники рентгеновского излучения	8
	1.1.1. Рентгеновские трубки	
	1.1.2. Ускорители заряженных частиц	12
	1.1.3. Циклические ускорители электронов –	
	синхротроны	13
	1.1.4. Основные свойства и характеристики	
	синхротронного излучения	18
	1.1.5. Линейные ускорители электронов –	
	рентгеновские лазеры	
	на свободных электронах	
1.2.	Кристаллы-монохроматоры	31
	1.2.1. Дифракция рентгеновского излучения	
	на монокристаллах	
	1.2.2. Спектральное разрешение	
	1.2.3. Апертура плоского кристалла	38
	1.2.4. Фокусирующие методы	
4.2	с цилиндрическим изгибом кристалла	
1.3.	Детекторы ионизирующего излучения	
	1.3.1. Ионизационные детекторы	
	1.3.2. Ионизационная камера	
	1.3.4. Сиотимия Гойгора Мистера	
	1.3.4. Счетчики Гейгера–Мюллера	
	1.3.5. Сцинтилляционные детекторы	
	1.3.6. Полупроводниковые детекторы	51

Ä

	1.3.7. Позиционно-чувствительные детекторы	
	излучения	53
	1.3.8. Микроканальные пластины	
	1.3.9. Энергетическое разрешение спектрометра	
K	онтрольные вопросы к главе 1	
	роектные задания к главе 1	
	•	
Глава 2. Р	ЕНТГЕНОСПЕКТРАЛЬНЫЕ МЕТОДЫ	63
2.	1. Метод рентгеновской флуоресцентной	
	спектроскопии	65
	2.1.1. Физические принципы	65
	2.1.2. Аппаратная реализация	67
	2.1.3. Примеры решения научных задач методом	
	рентгенофлуоресцентного анализа	
	с использованием синхротронного	
	излучения	74
2.	.2. Спектроскопия рентгеновского поглощения	76
	2.2.1. Физические принципы	77
	2.2.2. Аппаратная реализация	87
	2.2.3. Примеры решения научных задач методом	
	рентгеновской спектроскопии поглощения	
	с использованием синхротронного	
	излучения	93
2.	3. Рентгеновская фотоэлектронная	
	спектроскопия1	01
	2.3.1. Физические принципы1	02
	2.3.2. Аппаратная реализация1	05
	2.3.3. Примеры решения научных задач	
	методом рентгеновской фотоэлектронной	
	спектроскопии с использованием	
	синхротронного излучения1	30
K	онтрольные вопросы к главе 21	37
	роектные задания к главе 21	
Литерату	1	40
, we end v	UA	41)