МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

## ПРОГРАММНЫЙ ПАКЕТ WIEN2k.

#### Часть 2

Моделирование рентгеновских эмиссионных и абсорбционных спектров

Учебно-методическое пособие

Воронеж Издательский дом ВГУ 2017

Ä

# СОДЕРЖАНИЕ

| 1. Алгоритм расчета рентгеновских спектров излучения      |    |
|-----------------------------------------------------------|----|
| (эмиссии) и поглощения (абсорбции) твердых тел            | 4  |
| 2. Учет электронных вакансий. Правило конечного состояния | 10 |
| 3. Создание суперъячейки                                  | 12 |
| 4. Вычисление рентгеновских спектров поглощения           | 16 |
| 5. Пример расчета рентгеновского спектра поглощения       | 18 |
| Библиографический список                                  | 20 |

Опишем значения основных параметров, приведенных в файле **case.inxs**.

Строка 1: заголовок файла (не влияет на результат расчета).

**Строка 2:** порядковый номер атома (в файле кристаллической структуры **case.struct**), рентгеновский спектр которого нужно вычислить.

**Строка 3:** главное квантовое число n остовного состояния электрона, участвующего в образовании спектра (см. табл. 1, рис. 3).

**Строка 4:** орбитальное квантовое число l остовного состояния электрона, участвующего в образовании спектра (см. табл. 1, рис. 3).

#### Строка 5:

- **split** параметр, задающий величину спин-орбитального расщепления (например, между  $L_{II}$  и  $L_{III}$  краями) в эВ;
- int1, int2 параметры, указывающие относительную интенсивность краев спектра при учете спин-орбитального расщепления.

Значения 0; 0,5; 0,5 для split, int1, int2 дают несмещенный спектр.

**Строка 6: EMIN, DE, EMAX** — энергетические параметры: минимальная энергия, шаг по шкале энергии и максимальная энергия, определяющие диапазон для расчета спектра. Все значения задаются в эВ относительно уровня Ферми.

Строка 7: ключевое слово, определяющее тип рассчитываемого спектра

- EMIS рентгеновский спектр излучения (эмиссионный);
- ABS рентгеновский спектр поглощения (абсорбционный). *По умолчанию выбирается этот вариант*.

Строка 8: S – величина спектрометрического уширения. Для спектра поглощения S включает в себя как экспериментальное уширение, так и уширение остовного уровня.

Ä

Строка 9: gamma0 — параметр, задающий величину уширения, связанного с конечным временем жизни остовного состояния.

На рис. 3 показаны возможные абсорбционные переходы электронов в твердых телах с обозначением начальных состояний и соответствующих данным переходам спектральных краев.

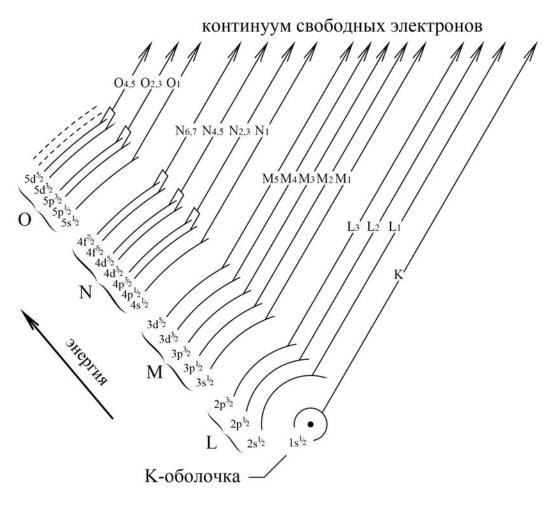



Рис. 3. Абсорбционные электронные переходы в твердом теле

Все внесенные в файл изменения следует сохранить, нажав на кнопку Save and continue в верхней части экрана.

После этого пользователь будет возвращен к рабочему окну программы **хѕрес** (рис. 1) и сможет продолжить последовательное выполнение действий.

Таблица 1 Квантовые числа, характеризующие рентгеновские спектры

| Начальное                         | состояние         | Квантовые числа<br>начального состояния |   |     | Симметрия              |  |
|-----------------------------------|-------------------|-----------------------------------------|---|-----|------------------------|--|
| Рентге-<br>новское<br>обозначение |                   | n                                       | l | j   | конечного<br>состояния |  |
| K                                 | $1s^{1/2}$        | 1                                       | 0 | 1/2 | p                      |  |
| $L_1$                             | 2s <sup>1/2</sup> | 2                                       | 0 | 1/2 | p                      |  |
| $L_2$                             | 2p <sup>1/2</sup> | 2                                       | 1 | 1/2 | s или d                |  |
| $L_3$                             | $2p^{3/2}$        | 2                                       | 1 | 3/2 | s или d                |  |
| $M_1$                             | $3s^{1/2}$        | 3                                       | 0 | 1/2 | p                      |  |
| $M_2$                             | 3p <sup>1/2</sup> | 3                                       | 1 | 1/2 | s или d                |  |
| $M_3$                             | $3p^{3/2}$        | 3                                       | 1 | 3/2 | s или d                |  |
| $M_4$                             | $3d^{3/2}$        | 3                                       | 2 | 3/2 | p или $f$              |  |
| $M_5$                             | $3d^{5/2}$        | 3                                       | 2 | 5/2 | p или $f$              |  |
| $N_1$                             | $4s^{1/2}$        | 4                                       | 0 | 1/2 | p                      |  |
| $N_2$                             | 4p <sup>1/2</sup> | 4                                       | 1 | 1/2 | s или d                |  |
| $N_3$                             | $4p^{3/2}$        | 4                                       | 1 | 3/2 | s или d                |  |
| $N_4$                             | $4d^{3/2}$        | 4                                       | 2 | 3/2 | p или $f$              |  |
| $N_5$                             | 4d <sup>5/2</sup> | 4                                       | 2 | 5/2 | p или $f$              |  |
| $N_6$                             | $4f^{5/2}$        | 4                                       | 3 | 5/2 | d                      |  |
| $N_7$                             | $4f^{7/2}$        | 4                                       | 3 | 7/2 | d                      |  |
| $O_1$                             | 5s <sup>1/2</sup> | 5                                       | 0 | 1/2 | p                      |  |
| $O_2$                             | 5p <sup>1/2</sup> | 5                                       | 1 | 1/2 | s или d                |  |
| $O_3$                             | $5p^{3/2}$        | 5                                       | 1 | 3/2 | s или d                |  |
| $O_4$                             | 5d <sup>3/2</sup> | 5                                       | 2 | 3/2 | p или $f$              |  |
| $O_5$                             | 5d <sup>5/2</sup> | 5                                       | 2 | 5/2 | p или $f$              |  |

**Действие: х хѕрес** – запуск программы **хѕрес**. Будет произведен расчет рентгеновского спектра.

**Действие: plot** — запуск интерфейса для графического построения спектров. Откроется окно, аналогичное приведенному на рис. 4.

| ^ |
|---|
|   |
|   |
|   |
|   |
|   |
|   |

| XSPEC          |            |         |                                               |    |
|----------------|------------|---------|-----------------------------------------------|----|
| [ Show full me | enu]       |         |                                               |    |
| We are in plo  | ot mode    |         |                                               |    |
| broadened s    | pectrum    | column= | plot (partial DOS must be plotted in DOS-Task | () |
| Set ranges (c  | optional): |         |                                               |    |
| xmin=          | xmax=      | ymin=   | ymax=                                         |    |
|                |            |         |                                               |    |

Рис. 4. Окно редактора графического построения рентгеновских спектров

В пустых полях задаются начальные и конечные значения по осям координат (х = энергия, у = интенсивность). В выпадающем меню указывается, какой именно график следует построить. Типы графиков:

broadened spectrum – рентгеновский спектр с учетом размытия; unbroadened spectrum – рентгеновский спектр без размытия;

**matrix elements** L+1 — матричные элементы перехода для состояний, характеризуемых квантовым числом l+1;

**matrix elements L-1** — матричные элементы перехода для состояний, характеризуемых квантовым числом l-1;

core wavefunction – волновая функция остовного состояния.

ightharpoonup Внимание! При попытке расчета рентгеновского спектра может появиться сообщение об ошибке. В этом случае необходимо вернуться к редактированию файла case.inxs и проверить, не была ли допущена ошибка при работе с ним. Возможно, указан неверный номер атома или значения квантовых чисел <math>n, l. Также возможна ситуация, когда состояние, участвующее в образовании спектра, не является остовным. В этом случае следует вернуться к этапу lstart (см. [1]) и изменить энергию отделения  $E_s$  так, чтобы нужное состояние стало остовным, m.е. уменьшить величину  $E_s$  по модулю  $|E_s^{new}| < |E_s^{old}|$ .

Ä

### 2. Учет электронных вакансий.

#### Правило конечного состояния

Описанная в предыдущем разделе последовательность действий позволяет провести вычисления XES и XAS спектров для идеального кристалла. При этом электронная структура моделируемого образца рассчитывается в основном энергетическом состоянии, т.е. считается, что образец обладает минимальной возможной энергией, при которой все его электроны локализованы на своих уровнях и зонах. Однако необходимо проведении реального эксперимента учитывать, ЧТО при подвергается внешнему воздействию, В результате электронная структура изменяется. Теоретическое описание подобных процессов подчиняется так называемому «Правилу конечного состояния» [2]. Для его пояснения рассмотрим процессы, приводящие к возникновению рентгеновских спектров.

1. На рис. 5, а схематически изображен процесс образования L<sub>2,3</sub> рентгеновского эмиссионного спектра. Вначале пучок высокоэнергетических электронов бомбардирует исследуемый образец и выбивает электроны с его остовного уровня. В результате на остовном уровне образуется вакансия, которая затем заполняется электроном, переходящим из валентной зоны. Этот переход сопровождается испусканием (эмиссией) рентгеновского фотона, в результате чего происходит образование спектра XES. Поэтому в данном случае в конечном состоянии имеется заполненный атомный остов и вакантное состояние (дырка) в валентной зоне. Эта дырка обычно хорошо экранирована валентными электронами и не оказывает влияния на форму спектра, который выглядит так же, как и в основном энергетическом состоянии. Следовательно, для расчета спектра XES достаточно смоделировать элементарную ячейку материала и выполнить последовательность действий, описанную в предыдущем разделе.