· · · Ä

А.В. Балмасов, Ю.Я. Лукомский

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ТЕОРЕТИЧЕСКОЙ ЭЛЕКТРОХИМИИ

Иваново 2008

• •

Федеральное агентство по образованию

Государственное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

А.В. Балмасов, Ю.Я. Лукомский

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ТЕОРЕТИЧЕСКОЙ ЭЛЕКТРОХИМИИ

Учебное пособие

Иваново 2008

УДК 541.13

Балмасов, А.В. Лабораторный практикум по теоретической электрохимии / А.В. Балмасов, Ю.Я. Лукомский; Иван. гос. хим.—технол. ун-т. — Иваново, 2008. — 84 с. ISBN 5-9616-0274-6.

В практикуме содержатся лабораторные работы по следующим разделам курса теоретической электрохимии:

- 1. Законы Фарадея. Кулонометрия.
- 2. Термодинамика растворов электролитов.
- 3. Неравновесные явления в растворах электролитов. Электрическая проводимость растворов электролитов.
- 4. Равновесные электродные процессы.
- 5. Кинетика электродных процессов.

описания краткое В тексте каждой работы содержатся: задание, обработка теоретическое введение, порядок выполнения работы, экспериментальных данных, приложения, содержащие дополнительные сведения справочного и методического характера.

Предназначен ДЛЯ студентов дневного И заочного отделения, обучающихся по специальности 240302 «Технология электрохимических производств» и изучающих дисциплину «Теоретическая электрохимия» и обучающихся ПО специальности 121200 студентов, художественной обработки материалов», специализация «металл – покрытия», изучающих дисциплину «Электрохимия»

Печатается по решению редакционно-издательского совета Ивановского государственного химико-технологического университета.

Рецензенты:

Лаборатория электрохимических процессов в конденсированных ионных средах Института химии растворов РАН; доктор химических наук Л.В. Курицын (Ивановский государственный университет)

ISBN 5-9616-0274-6

- © Балмасов А.В., Лукомский Ю.Я., 2008
- © Ивановский государственный химико-технологический университет, 2008

Ä

1. ХИМИЧЕСКОЕ ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. Законы Фарадея. Выход по току

При прохождении электрического тока через электрохимические системы на электродах происходят электрохимические превращения, протекающие в определенном направлении и с конечной скоростью. Равновесное состояние $Ox +z\bar{e} \Leftrightarrow Red$, установившееся на электроде в отсутствие внешнего тока, нарушается. В зависимости от направления тока электродная реакция идет как восстановительная (катодная) $Ox +z\bar{e} \to Red$ или как окислительная (анодная) $Red \to Ox +z\bar{e}$. Соотношение между количеством протекшего через систему электричества Q и массами прореагировавших веществ m выражается akohamu ako

1. Количество вещества, прореагировавшего на электроде под действием электрического тока, пропорционально количеству протекшего электричества:

$$m = k_{\mathfrak{I}}Q = k_{\mathfrak{I}}It \qquad , \tag{1.1}$$

где m — количество прореагировавшего вещества, кг; г; Q — количество электричества, Кл; А·ч; I — сила тока, А; t — время электролиза, с; ч; k_3 — электрохимический эквивалент — количество вещества, прореагировавшего при протекании единицы количества электричества. В зависимости от выбранных единиц количества электричества k_3 может выражаться в кг/Кл, г/(А·ч)....

2. При пропускании через различные электрохимические системы одного и того же количества электричества массы прореагировавших веществ пропорциональны их химическим эквивалентам Э:

$$\frac{m_1}{9_1} = \frac{m_2}{9_2} = \frac{m_3}{9_3} = \dots = const.$$
 (1.2)

Из второго закона следует, что для электрохимического превращения 1 моль-эквивалента любого вещества требуется одинаковое количество электричества F, называемое uucnom $\Phi apades$. Оно составляет 96485 (\approx 96500) Кл или 26,8 А·ч на 1 моль-экв. Поскольку $\mathcal{G} = M/n$, где M-m молекулярная (атомная M) масса реагирующего вещества; Z-m число электронов, участвующих в акте электрохимического превращения, получаем:

$$k_{9} = \frac{9}{F} = \frac{M}{zF} \left(\text{или } k_{9} = \frac{A}{zF} \right) . \tag{1.3}$$

Отсюла

$$k_9 = \frac{M}{z \cdot 96500}$$
 г/Кл; или $k_9 = \frac{M}{z \cdot 26,8}$ г/(А·ч) (1.4)

Уравнение, объединяющее оба закона Фарадея, может быть записано:

$$m = \frac{MQ}{zF} = \frac{MIt}{zF} = \frac{MjSt}{zF} , \qquad (1.5)$$

где j-nлот ность тока (сила тока, отнесенная к единице поверхности электрода), A/m^2 ; A/gm^2 ; A/cm^2 ; $S-площадь электрода, <math>m^2$; gm^2 ; gm^2 .

Скорость химической реакции \mathbf{v} определяется как количество вещества, прореагировавшего в единицу времени. Для электрохимических процессов, используя уравнения (1.1) и (1.5) получаем:

$$\mathbf{V} = \pm \frac{dm}{dt} = k_{,9} \frac{dQ}{dt} = k_{,9} jS \quad . \tag{1.6}$$

Законы Фарадея являются общими и точными законами электрохимии. Однако при практическом осуществлении электрохимических процессов наблюдаются отклонения от этих законов: масса $m_{\rm д}$ действительно полученного или разложившегося вещества не соответствует теоретическому значению, рассчитанному по закону Фарадея $m_{\rm T}$. Эти отклонения – кажущиеся и вызваны следующими причинами:

- 1) одновременным протеканием на электроде нескольких электрохимических реакций, на каждую из которых затрачивается определенное количество электричества;
- 2) химическими реакциями между полученным продуктом и веществами, содержащимися в электролите или образующимися при побочных электрохимических реакциях;
 - 3) механическими потерями продукта;
 - 4) возникновением коротких замыканий между электродами.

Для учета кажущихся отклонений от законов Фарадея используют величину выхода по току (ВТ), который рассчитывается:

при постоянном значении
$$Q$$
: BT = $(m_{\pi}/m_{\tau})100\%$; (1.7)

постоянном значении
$$m$$
: BT = $(Q_{\text{\tiny T}}/Q_{\text{\tiny Л}})100\%$. (1.8)

В уравнении (1.8) $Q_{\scriptscriptstyle \rm T}$ количество электричества, теоретически необходимое для получения массы m продукта; $Q_{\scriptscriptstyle \rm T}$ — действительно затраченное количество электричества.

Законы Фарадея широко используются в электрохимии при различных теоретических и технологических расчетах.

1.2. Кулонометрия

Законы Фарадея могут быть применены для расчета количества электричества при использовании кулонометров, а также при кулонометрическом методе анализа. В последнем случае по количеству электричества, затраченного на электрохимическое превращение какого-либо вещества, рассчитывается его масса. Основным условием применения законов Фарадея для расчетов при кулонометрических измерениях является стопроцентный выход по току на рабочем электроде.

Кулонометры – приборы для определения количества электричества, протекшего через электрическую цепь. Они представляют собой электролизеры, на рабочих электродах которых идут электрохимические реакции с образованием определенных продуктов. По количеству последних,

используя законы Фарадея, можно рассчитать количество прошедшего через цепь электричества. Необходимыми условиями для использования электрохимических систем в качестве кулонометров являются:

- 1) протекание на рабочем электроде электрохимической реакции с выходом по току, равным 100%;
- 2) достаточно простой и надежный метод определения количества вещества, образовавшегося на рабочем электроде.

По способу определения количеств веществ, образующихся на рабочих электродах, различают весовые, объемные и титрационные кулонометры.

Весовой серебряный кулонометр (рис. 1.1, а):

$$(-)$$
 Pt $\left| AgNO_3 \right|$ Ag $(+)$

Реакция на рабочем электроде – катоде:

$$Ag^+ + \bar{e} \rightarrow Ag$$

Катодом служит платиновая чашка 1, анод — серебряная пластинка или проволока 2 — помещен в пористый керамический сосуд или мешок из ткани для предотвращения попадания анодного шлама в катодный осадок. Максимально допустимые значения плотности тока: $j_{\rm k} = 0.02$ A/cm²; $j_{\rm a} = 0.2$ A/cm². Точность показаний 0.05%.

Весовой медный кулонометр (рис. 1.1, б):

Реакция на рабочем электроде – катоде:

$$Cu^{2+} + 2\bar{e} \rightarrow Cu$$

Кулонометр представляет собой электролизер 1 с двумя медными анодами 2 и катодом 3 из меди или латуни. Кроме сульфата меди электролит содержит серную кислоту (для повышения электропроводности раствора), этиловый спирт (для предотвращения окисления катодного осадка меди). Катодная плотность тока не должна превышать 0,02 А/см². Точность показаний 0,1%.

При использовании весовых кулонометров определяют массу выделившегося на катоде металла (серебра или меди). Расчет количества электричества производится по уравнениям:

$$Q_F = mz/A;$$
 $Q_{K_I} = 96500mz/A;$ $Q_{A_{Y}} = 26.8 mz/A;$ (1.9)

где m — масса осадка металла на катоде, г; A — атомная масса металла, г/моль; z — количество электронов, участвующих в реакции на катоде кулонометра.

Объемный газовый кулонометр (рис. 1.1, в):

Электродные реакции:

катодная:
$$2 \text{ H}_2\text{O} + 2\bar{\text{e}} \rightarrow \text{H}_2 + 2 \text{ OH}^-$$
;

анодная:
$$2 \text{ H}_2\text{O} \rightarrow \text{O}_2 + 4 \text{ H}^+ + 4\bar{\text{e}}.$$

Кулонометр представляет собой градуированную бюретку 1, в нижний конец которой впаяны два платиновых электрода 2 и которая соединена с уравнительной склянкой 3. Бюретка и склянка заполнены раствором

электролита. При электролизе в верхней части бюретки накапливается смесь водорода и кислорода, объем которой легко измерить.

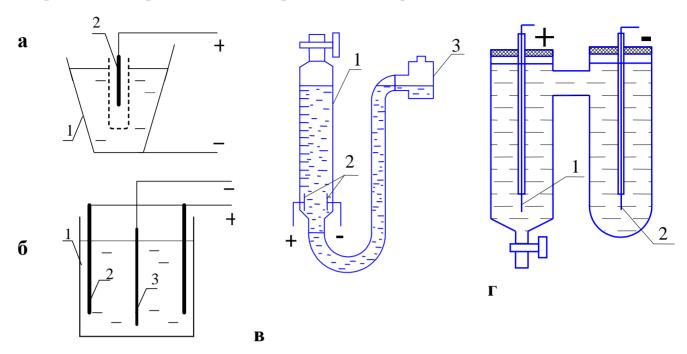


Рис. 1.1. Кулонометры: а – весовой серебряный; б – весовой медный; в – газовый; г – титрационный иодный (описание в тексте)

Расчет количества электричества производится следующим образом. Согласно уравнениям электродных реакций на образование 1 моля водорода требуется 2 фарадея электричества, а на 1 моль кислорода — 4. В соответствии с этим при прохождении через раствор 1 фарадея электричества (96500 Кл или 26,8 А·ч) объем газовой смеси при нормальных условиях составляет 16800 см 3 (11200 см 3 водорода, 5600 см 3 кислорода). Количество электричества определяют по формуле:

$$Q_F = \frac{4(P - P_1)V}{3RT},\tag{1.10}$$

где P — атмосферное давление; P_1 — давление насыщенного пара воды над раствором, которое можно принять равным давлению насыщенного водяного пара при температуре опыта; V — объем газа в бюретке; T — температура опыта, K.

Если давление выражено в мм рт. ст., а объем газовой смеси – в см 3 , формула имеет вид:

$$Q_F = 2{,}13 \cdot 10^{-5} \frac{(P - P_1)V}{T}. (1.11)$$

Точность показаний газовых кулонометров из-за возможной утечки газов невелика. Преимуществом их конструкции является возможность осуществлять текущий контроль количества электричества в ходе опыта.

Титрационный иодный кулонометр (рис. 1.1, г):

Реакция на рабочем электроде – аноде:

$$2 I^- \rightarrow I_2 + 2\bar{e}$$
.

Кулонометр представляет собой H-образный сосуд, в одной из частей которого, снабженной краном, находится платиновый анод 1, а в другой – платиновый катод 2. По окончании опыта анолит сливают через кран и титруют образовавшийся при электролизе иод раствором тиосульфата натрия. В качестве индикатора при титровании используют раствор крахмала. Максимальная анодная плотность тока 0.015 A/cм². Точность 0.01%.

Количество электричества рассчитывается по формуле:

$$Q_F = 10^{-3} VC, (1.12)$$

где V – объем раствора тиосульфата натрия, затраченный на титрование I_2 , мл; C – нормальная концентрация раствора реагента, моль-экв/л.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Работа 1.1. Кулонометрия. Сравнение показаний кулонометров

Задание: определить погрешность в показаниях кулонометров по сравнению с показаниями кулонометра, принятого за эталон.

Введение

Точность показаний кулонометров определяется соблюдением необходимого режима электролиза (превышение допустимого значения плотности тока на рабочем электроде сопровождается снижением выхода по току образующегося на электроде продукта), а также точностью метода, применяющегося для определения количества продукта реакции (взвешивание, титрование, измерение объема газа). Наиболее точным является весовой серебряный кулонометр.

Экспериментальная часть работы выполняется в соответствии с заданием в одном из вариантов, например, сравнение показаний весового медного и иодного кулонометров; сравнение показаний медного и газового кулонометров и др. В задании указываются: типы кулонометров, значение силы тока в цепи или плотность тока на рабочем электроде, время опыта.

Порядок выполнения работы

1. Подготовка кулонометров к работе.

Весовой серебряный кулонометр.

Платиновую чашку очищают концентрированной азотной кислотой, промывают водопроводной и дистиллированной водой, сушат в сушильном шкафе и взвешивают на аналитических весах. Собирают кулонометр и заливают его 10–20 % раствором нитрата серебра.

Весовой медный кулонометр.

Электроды зачищают наждачной бумагой, травят в азотной кислоте (разбавленной 1:4), промывают водопроводной и дистиллированной водой. Собирают кулонометр и наливают в него раствор, содержащий 150 г/л сульфата меди, 50 г/л серной кислоты, 50 мл/л этилового спирта. Перед началом основного опыта через кулонометр пропускают электрический ток плотностью 0,01 A/cм² в течение 20 – 25 мин. Покрытый медью катод

промывают дистиллированной водой и спиртом, сушат в сушильном шкафе, взвешивают на аналитических весах и помещают в кулонометр для основного опыта.

Газовый кулонометр.

Заполняют уравнительную склянку 0,5 н. раствором сульфата натрия или 10% раствором гидроксида натрия. При открытом кране бюретки с помощью уравнительной склянки устанавливают уровень жидкости на нулевую отметку, после чего кран закрывают.

Иодный кулонометр.

Н-образный сосуд промывают хромовой смесью, платиновые электроды – концентрированной азотной кислотой, затем водопроводной и дистиллированной водой. В сосуд наливают 10% раствор иодида калия, подкисленный небольшим количеством 2 М HCl, и помещают электроды.

- 2. Собирают экспериментальную установку согласно схеме, приведенной на рис. 1.2, и проводят электролиз при условиях, заданных преподавателем.
 - 3. По окончании опыта выполняют следующие операции.

Катоды *весовых кулонометров* промывают дистиллированной водой и спиртом, сушат в сушильном шкафе и взвешивают на аналитических весах.

В газовом кулонометре определяют объем гремучего газа, совмещая уровни жидкости в бюретке и уравнительной склянке. Отмечают температуру в помещении и барометрическое давление.

Из *иодного кулонометра* через кран сливают анолит в мерную колбу подходящего объема, доводят раствор до метки и, взяв пробу, например 20 мл, титруют иод 0,1 н. раствором тиосульфата натрия. В конце титрования добавляют несколько миллилитров водного раствора крахмала. При расчете Q_F по уравнению (1.12) следует учитывать соотношение объема мерной колбы и объема пробы, взятой на титрование.

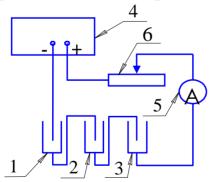


Рис. 1.2. Принципиальная схема установки к работам по кулонометрии: 1; 2; 3 — кулонометры (например, медный, газовый и иодный); 4 — источник постоянного тока (выпрямитель B-24);

5 – многопредельный миллиамперметр;

6 – реостат

Таблица опытных и расчетных данных*

Условия опыта		Масса катода кулонометра, г		Привес,	Объем	Объем Na ₂ S ₂ O ₃ ,	Количество электричества, Кл			Ошибки			
сила тока, мА	время, мин	до опыта	после опыта	Γ	газа, см ³	Na ₂ S ₂ O ₃ , мл	Q_I	Q_2	Q_3	абсол ΔQ_2	ютн. ΔQ_3	οτης δ ₂ %	осит. δ ₃ %

* – в таблице заполняются столбцы, относящиеся только к используемым в работе кулонометрам

Обработка опытных данных

Для каждого кулонометра рассчитывают количества электричества Q_I , Q_2 , Q_3 (Кл), используя уравнения (1.9 – 1.12). Величины давления насыщенного водяного пара P_1 в уравнении (1.11) в зависимости от температуры приведены в приложении 2. Количество электричества, определенное по газовому или иодному кулонометру, необходимо выразить в кулонах, для чего полученные по формулам (1.11) и (1.12) значения Q_F следует умножить на 96500.

Приняв за эталон показания наиболее точного из исследуемых кулонометров, например Q_I , рассчитывают абсолютную и относительную ошибки в показаниях других кулонометров:

Абсолютная ошибка, Кл:
$$\Delta Q_2 = Q_1 - Q_2$$
; $\Delta Q_3 = Q_1 - Q_3$. (1.13)

Относительная ошибка, %:
$$\delta Q_2 = 100 \Delta Q_2/Q_I$$
; $\delta Q_3 = 100 \Delta Q_3/Q_I$. (1.14)

Содержание отчета

Отчет должен содержать формулировку задания, краткое изложение теоретических основ изучаемого вопроса и последовательность выполнения работы, опытные и расчетные данные, выводы.

Работа 1.2. Кулонометрия. Проверка показаний амперметра с помощью кулонометра

Задание: с помощью кулонометра определить количество электричества Q_K и среднюю силу тока I_K в электрической цепи и сравнить их значения с аналогичными величинами, полученными на основании показаний миллиамперметра – Q_A и I_A ; найти абсолютную и относительную ошибки при определении этих величин с помощью миллиамперметра.

Введение

Величину силы тока и количества протекшего через цепь электричества легко можно определить на основании показаний амперметра и времени t процесса: $Q_A = I_A t$. Однако из-за возможных колебаний силы тока в цепи для точного определения количества электричества И средней силы тока кулонометры. целесообразно использовать C помощью кулонометра определяют количество электричества Q_K , а среднюю силу тока рассчитывают по формуле: $I_K = Q_K/t$. Экспериментальная часть выполняется в соответствии с выданным преподавателем, котором В ТИП используемого кулонометра, сила тока и продолжительность опыта.

Порядок выполнения работы

- 1. Подготовку кулонометров к работе производить так же, как указано в описании методики выполнения работы 1.1. Катод весового кулонометра после очистки и сушки взвешивают на аналитических весах.
- 2. Собирают экспериментальную установку согласно схеме, приведенной на рис. 1.2, в которой имеется один, рекомендованный заданием, кулонометр. После проверки схемы преподавателем включают ток и проводят электролиз, точно отмечая продолжительность опыта.