Г.Г.Шишкин, И.М.Агеев

НАНОЭЛЕКТРОНИКА

ЭЛЕМЕНТЫ ПРИБОРЫ УСТРОЙСТВА

Учебное пособие

4-е издание, электронное

Рекомендовано

Государственным образовательным учреждением высшего профессионального образования «Московский государственный технический университет имени Н. Э.Баумана» в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям 210600 «Нанотехнология», 152200 «Наноинженерия», 210100 «Электроника и наноэлектроника»

Москва Лаборатория знаний 2020 УДК 621.382(075.8) ББК 38.852+32.844.1 III65

Шишкин Г. Г.

Ш65 Наноэлектроника. Элементы, приборы, устройства : учебное пособие / Г. Г. Шишкин, И. М. Агеев. — 4-е изд., электрон. — М. : Лаборатория знаний, 2020. — 411 с. — Систем. требования: Adobe Reader XI ; экран 10".— Загл. с титул. экрана. — Текст : электронный.

ISBN 978-5-00101-731-8

В учебном пособии излагаются физические и технологические основы наноэлектроники, в том числе принципы функционирования и характеристики наноэлектронных устройств на базе квантово-размерных структур: резонансно-туннельных, одноэлектронных и спинтронных приборов. Рассматриваются особенности квантовых компьютеров, электронных устройств на сверхпроводниках, а также приборов нанобиоэлектроники. Каждая глава снабжена контрольными вопросами и заданиями для самоподготовки.

Для студентов технических вузов, аспирантов, преподавателей и практических специалистов в области электроники.

УДК 621.382(075.8) ББК 38.852+32.844.1

Деривативное издание на основе печатного аналога: Наноэлектроника. Элементы, приборы, устройства : учебное пособие / Г. Г. Шишкин, И. М. Агеев. — М. : БИНОМ. Лаборатория знаний, 2011.-408 с. : ил. — ISBN 978-5-9963-0638-1.

Издание осуществлено при финансовой поддержке федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы по лоту «Проведение научных исследований коллективами научно-образовательных центров в области нанотехнологий и наноматериалов», госконтракт № 02.740.11.0790 от 17 мая 2010 г.

В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации

ISBN 978-5-00101-731-8

© Лаборатория знаний, 2015

Введ	ение	3
Разд	ел 1. Физические и технологические основы	
	наноэлектроники	7
Глав	а 1. Теоретические основы наноэлектроники	9
1.1.	Основные положения квантовой механики,	
	используемые в наноэлектронике	9
1.2.	Момент импульса и спин	14
1.3.	Магнитный резонанс	17
1.4.	Туннельный переход через потенциальный барьер	21
1.5.	Квантовые потенциальные ямы	24
	Интерференционные эффекты в наноструктурах	27
1.7.	Элементы зонной теории и транспортные явления	
	в наноразмерных структурах	29
	Сверхрешетки	33
1.9.	Плотность энергетических состояний	
	в низкоразмерных структурах	37
	Одноэлектроника	43
1.11.	Физические основы спинтроники	46 53
	Контрольные вопросы и задания	93
Глав	а 2. Физические свойства наноструктур	
	и наноструктурированных материалов	54
2.1.	Классификация низкоразмерных структур и наноматериалов	54
	Свойства двумерных структур	58
	Свойства одномерных структур и материалов	76
	Свойства углеродных наноструктур	80
2.5.	Свойства наночастиц и материалов с наночастицами	92
	Контрольные вопросы и задания	96
Глав	а 3. Технология создания наноматериалов	
	и наноструктур и методы их диагностики	97
3.1.	Методы диагностики нанообъектов	97
	Эпитаксиальные методы создания тонких пленок	
		104
3.3.	Технология создания квантовых точек и нитей	112
3.4.	Основные технологические методы создании	
	углеродных наноматериалов	118
		122
3.6.		124
	Контрольные вопросы и задания	127

Раздел 2. Наноэлектронные приборы	129
Глава 4. Полупроводниковые гомо- и гетероструктуры и приборы на их основе	131
4.1. Электрические гомо- и гетеропереходы 4.2. Туннельные диоды 4.3. Биполярные транзисторы 4.4. Полевые транзисторы Контрольные вопросы и задания	131 159 168 200 232
Глава 5. Наноэлектронные приборы на основе квантово-размерных структур	234
5.1. Резонансно-туннельные приборы 5.2. Одноэлектронные приборы 5.3. Спинтронные приборы 5.4. Полупроводниковые фотоприборы 5.5. Полупроводниковые инжекционные лазеры и светодиоды Контрольные вопросы и задания	234 248 260 268 290 316
Глава 6. Базовые логические элементы квантовых компьютеров .	318
6.1. Общие сведения о квантовых компьютерах	318
резонанса	324 331
на сверхпроводниках	
Глава 7. Сверхпроводимость и электронные устройства на сверхпроводниках	342
7.1. Основные свойства сверхпроводящего состояния	
на джозефсоновских переходах	383 389 390
Глава 8. Нанобиоэлектроника	391
8.1. Общие положения и термины 8.2. Электропроводные свойства ДНК 8.3. Приборы на основе биоэлектроники 8.4. Конечный биоавтомат Шапиро Контрольные вопросы и задания	391 394 396 401 403
Литература	404