Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М.В. Ломоносова»

О.А. Калиничева, С.В. Бутаков, Н.Б. Баланцева

Электротехнические материалы

Учебное пособие

Архангельск САФУ 2018

Ä

УДК 621.315.6(075.8) ББК 31.23 К 17

> Рекомендовано к изданию учебно-методическим советом Северного (Арктического) федерального университета имени М.В. Ломоносова

Калиничева, О.А.

К17 Электротехнические материалы [Электронный ресурс]: учебное пособие / О.А. Калиничева, С.В. Бутаков, Н.Б. Баланцева; Сев. (Арктич.) федер. унтим. М.В. Ломоносова. — Электронные текстовые данные. — Архангельск: САФУ, 2018. — 150 с.

ISBN 978-5-261-01310-5

Приведены современные данные о механических, электрических, тепловых и физико-химических характеристиках электротехнических материалов в связи с их строением и внешними условиями. Приведена классификация материалов и области их применения. Рассмотрены свойства газообразных, жидких и твёрдых электроизоляционных материалов, проводниковых, полупроводниковых и магнитных материалов. Даны указания для выполнения лабораторных работ и расчетных заданий.

Предназначено для студентов направления подготовки 13.03.02 «Электроэнергетика и электротехника».

> УДК 621.315.6(075.8) ББК 31.23

Издается в авторской редакции

Издательский дом им. В.Н. Булатова САФУ 163060, г. Архангельск, ул. Урицкого, д. 56

ISBN 978-5-261-01310-5

- © Калиничева О.А., Бутаков С.В., Баланцева Н.Б., 2018
- © Северный (Арктический) федеральный университет им. М.В. Ломоносова, 2018

• •

Оглавление

Введение	
1. Виды связ	ей в веществах
1.1. Криста	аллические вещества
1.2. Аморф	рные и аморфно-кристаллические вещества
	кация электротехнических материалов
3. Поляризац	ия диэлектриков
3.1. Поляр	изованность и относительная диэлектрическая проница-
емость веп	цества
3.2. Основ	ные виды поляризации
3.3. Классі	ификация диэлектриков по виду поляризации
3.4. Диэле	ктрическая проницаемость газов
3.5. Диэлег	ктрическая проницаемость жидких диэлектриков
3.6. Диэлег	ктрическая проницаемость твердых диэлектриков
4. Электропр	оводность
4.1. Электр	ропроводность твердых диэлектриков
4.2. Электр	ропроводность газов
4.3. Электр	ропроводность жидких диэлектриков
5. Диэлектри	ческие потери
	ктрические потери в газах
5.2. Диэле	ктрические потери в жидких диэлектриках
5.3. Диэле	ктрические потери в твердых диэлектриках
6. Пробой ди	электриков
-	й твердых диэлектриков
	й газообразных диэлектриков
	й жидких диэлектриков
	свойства диэлектриков
7.1. Harpei	востойкость
	остойкость
7.3. Тепло	стойкость
	проводность
	ские свойства диэлектриков
9. Физико-хи	мические свойства диэлектриков
	остные свойства диэлектриков
	неские свойства диэлектриков
_	золяционные материалы (ЭИМ)
10.1. Орг	анические диэлектрики
10.2. Heo	рганические диэлектрики

Ä

	10.3. Кремнийорганические диэлектрики
	10.4. Классификация органических ЭИМ
	10.5. Полимеризационные синтетические материалы
	10.6. Фторорганические полимеры
	10.7. Волокнистые материалы
	10.8. Текстильные материалы
	10.9. Пропитанные волокнистые материалы
	10.10. Эластомеры
11.	Нефтяные электроизоляционные масла
	11.1. Трансформаторное масло
	11.2. Конденсаторное масло
	11.3. Кабельные масла
	11.4. Синтетические жидкие диэлектрики
12.	Композиционные материалы
13.	Полупроводниковые материалы
	13.1. Электропроводность полупроводников и ее зависимость
	от различных факторов
	13.2. Простые полупроводники
14.	Проводниковые материалы
	14.1. Проводниковые материалы с высокой проводимостью
	14.2. Сверхпроводимость
	14.3. Контактные материалы
	14.4. Материалы с большим удельным сопротивлением
	14.5. Кабели
15.	Магнитные материалы
	15.1. Магнитомягкие материалы (МММ)
	15.2. Ферриты
	15.3. Магнитотвердые материалы
16.	Лабораторный практикум
	16.1. Правила электробезопасности при выполнении работ
	в лаборатории «электротехнических материалов»
	16.2. Лабораторная работа № 1 «Снятие поляризационной
	характеристики диэлектрика и ее зависимости от температуры»
	16.3. Лабораторная работа № 2 «Исследование электропроводности
	диэлектриков»
	16.4. Лабораторная работа № 3 «Изучение диэлектрической
	проницаемости и диэлектрических потерь в твердых диэлектриках»
	16.5. Лабораторная работа № 4 «Исследование электрических
	разрядов в воздухе»

Ä

Ä

16.6. Лабораторная работа № 5 «Определение электрической	
прочности трансформаторного масла»	103
 Лабораторная работа № 6 «Исследование электрических 	
разрядов по поверхности диэлектриков»	109
16.8. Лабораторная работа № 7 «Снятие петли гистерезиса	
ферромагнитного материала с помощью осциллографа	
и построение основной кривой намагничивания»	114
 Лабораторная работа № 8 «Исследование электрических 	
свойств проводниковых материалов»	123
17. Методические указания для выполнения расчетных заданий	132
17.1. Работа № 1 «Расчет диэлектрических характеристик неодно-	
родного изоляционного материала»	132
17.2. Работа № 2 «Расчет характеристик магнитных материалов»	142
Приложение	146
Список литературы.	150

ВВЕДЕНИЕ

Электротехническое материаловедение занимается изучением структуры и свойств диэлектрических, проводниковых, полупроводниковых и магнитных материалов в тепловой, магнитной, электрической средах.

Разработка, создание и эксплуатация современных систем, машин, аппаратов, приборов в электротехнических отраслях, электромашиностроении и электроэнергетике связаны с широким использованием электротехнических материалов. В связи с этим электротехническое материаловедение играет важную роль в подготовке инженеров электротехнических и электроэнергетических специальностей.

Совокупность научно-технических знаний о физико-химической природе, методах исследования и изготовления различных материалов составляет основу материаловедения, ведущая роль которого в настоящее время широко признана во многих областях техники и промышленности. Успехи материаловедения позволили перейти от использования уже известных к целенаправленному созданию новых материалов с заранее заданными свойствами.

При изучении разделов, посвященных различным классам материалов, необходимо придерживаться схемы, включающей раскрытие физической сущности явлений и процессов, происходящих в материалах при их взаимодействии с электромагнитным полем, анализ свойств материалов в различных условиях их эксплуатации, а также наиболее важные области применения в приборах и устройствах электротехники.

Диэлектрические материалы служат в качестве изоляции токоведущих частей энергоустановок. К ним относятся воздух в высоковольтных линиях, нефтяные масла в кабелях и трансформаторах, твёрдые электроизоляционные материалы в энергоустановках. Физические условия, в которых находится изоляция, требуют определённых физико-химических параметров электротехнических материалов. При этом необходимо учитывать механические характеристики (массу, плотность материала, прочность на изгиб, сжатие и разрыв); тепло-физические характеристики (теплоёмкость, теплопроводность, горючесть, нагревостойкость и теплостойкость); электрофизические характеристики (диэлектрическую прочность, электропроводность и т.д.); физико-химические характеристики (химическую стойкость, влагопроницаемость и т.д.). Однако невозможно одновременно удовлетворить всем требованиям, поэтому оценивают, какие из них являются главными, а какие – второстепенными.