Ä

Министерство образования и науки Российской Федерации Сибирский федеральный унивеситет

Ф. М. Носков

СТРУКТУРНАЯ САМООРГАНИЗАЦИЯ В ОБЛАСТЯХ ЛОКАЛИЗАЦИИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ В СПЛАВАХ С МАРТЕНСИТНЫМИ ПРЕВРАЩЕНИЯМИ (СИСТЕМЫ Fe-Mn, Ni-Ti)

Монография

Красноярск СФУ 2017 УДК 669.112.227.34:539.374 ББК 34.206.22 Н844

Рецензенты:

- Г. Г. Крушенко, доктор технических наук, главный научный сотрудник Института вычислительного моделирования Федерального исследовательского научного центра СО РАН;
- В. С. Жигалов, доктор физико-математических наук Института физики им. Л. В. Киренского Федерального исследовательского научного центра СО РАН

Носков, Ф. М.

Н844 Структурная самоорганизация в областях локализации пластической деформации в сплавах с мартенситными превращениями (системы Fe–Mn, Ni–Ti): монография / Ф. М. Носков. – Красноярск: Сиб. федер. ун-т, 2017. – 248 с. ISBN 978-5-7638-3633-2

На базе современных представлений о процессах, протекающих при пластической деформации, описан и обобщен процесс структурообразования в стали $110\Gamma13\Pi$ и сплаве $Ni_{51}Ti_{49}$. Предложены кластерные модели образования новых фаз при пластической деформации и рассмотрены ферромагнитные эффекты, вызванные их возникновением.

Предназначена для специалистов, работающих в области материаловедения специальных сталей и сплавов, а также бакалавров старших курсов специальности 22.03.01 «Материаловедение и технологии материалов» и магистрантов специальности 22.04.01 «Материаловедение и технологии материалов».

Электронный вариант издания см.: http://catalog.sfu-kras.ru УДК 669.112.227.34:539.374 ББК 34.206.22

ISBN 978-5-7638-3633-2

© Сибирский федеральный университет, 2017

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	5
Глава 1. ОСОБЕННОСТИ СТРУКТУРООБРАЗОВАНИЯ	
В МЕТАЛЛАХ ПРИ ПЛАСТИЧЕСКОЙ	
ДЕФОРМАЦИИ	8
1.1. Проблема структурной самоорганизации	
при пластической деформации	8
1.1.1. Основные понятия структурной самоорганизации	
в открытых системах	8
1.1.2. Самоорганизация, устойчивость состояния	
и нелинейность диссипативных систем	
1.2. Влияние пластической деформации на состояние металла	21
1.2.1. Формирование дефектной структуры	
деформируемого тела	25
1.2.2. Изменения в атомах и ионах	
при пластической деформации	32
1.3. Эффекты и последствия пластической деформации	38
1.3.1. Жидкоподобное состояние и аморфизация структуры	
при пластической деформации	38
1.3.2. Массоперенос	44
1.3.3. Процессы фазообразования	
при пластической деформации	51
1.4. Кластерный подход к моделированию структуры	
пластически деформированных сплавов	59
1.4.1. Краткая характеристика метода рассеянных волн	
для исследования электронных состояний и магнитных	
свойств кластеров	65
Глава 2. ОСОБЕННОСТИ СТРУКТУРООБРАЗОВАНИЯ	
В СТАЛИ 110Г13Л	
ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ	68
2.1. Общая характеристика стали 110Г13Л	
2.2. Условия формирования и структура мартенсита	
в стали 110Г13Л	72

2.3. Взаимосвязь микроструктуры и механических свойств	
массивных образцов стали 110Г13Л	81
2.4. Масштабная инвариантность структуры	
деформированной стали 110Г13Л	90
2.5. Аномально быстрый массоперенос	
при деформации стали 110Г13Л	102
2.6. Исследование фазового состава	
деформированных образцов стали 110Г13Л	112
2.7. Изменение молярного объема	
в пластически деформированной стали Гадфильда	123
2.8. Исследование магнитных свойств деформированных	
образцов стали 110Г13Л	132
2.9. Исследования электрических свойств	
деформированных образцов стали 110Г13Л	
2.10. Особенности магнитной структуры стали Гадфильда	
2.11. Кластерная модель структурообразования в стали 110Г13Л	152
2.12. Моделирование локальной электронной структуры	
железомарганцевых кластеров методом рассеянных волн	157
Глава 3. ОСОБЕННОСТИ СТРУКТУРООБРАЗОВАНИЯ В СПЛАВЕ Ni ₅₁ Ti ₄₉	166
ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ	100
3.1. Общая характеристика особенностей	166
мартенситного превращения с сплавах системы Ni-Ti	100
и линзовидных кристаллов при пластической деформации	
никелида титана	168
3.3. Мартенситные превращения в никелиде титана	100
через промежуточную фазу с решеткой ГЦК	176
3.4. Фаза со структурным типом шпинели	170
в пластически деформированом никелиде титана	182
3.5. Формирование икосаэдрических кластерных агрегатов	102
в пластически деформированных образцах никелида титана	193
3.6. Кластерная модель структурообразования в никелиде титана	
3.7. Исследование магнитных свойств деформированных образцов	
сплава Ni ₅₁ Ti ₄₉ и моделирование локальной электронной	
структуры кластеров никелида титана методом	
рассеянных волн	206
ЗАКЛЮЧЕНИЕ	212
SAKJIIO TEHRIE	213
СПИСОК ЛИТЕРАТУРЫ	214