Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Интегральные уравнения

Методические указания

Составитель: Г.А. Зуева

Иваново 2006

Составитель: Г.А. Зуева

УДК 613.19

Методы математической физики. Интегральные уравнения: Методические указания / Иван. гос. хим.-технол. ун-т; Сост. Г.А. Зуева. - Иваново, 2006.-32 с.

Методические указания содержат изложенный в краткой форме теоретический материал, относящийся к уравнениям математической физики (интегральным уравнениям). Приведены контрольные задачи и упражнения с ответами, представлен разбор решения типовых задач.

Методические указания рекомендуются студентам, изучающим методы математической физики, а также аспирантам высших технических учебных заведений.

Рецензент

доктор химических наук, профессор В.В. Рыбкин

(ГОУ ВПО «Ивановский государственный химико-технологический университет»)

Вопросы и задачи для самопроверки

- 1. Что такое неопределенный интеграл?
- 2. Напишите формулу интегрирования по частям.
- 3. Напишите формулу Ньютона-Лейбница.
- 4. В чем состоит геометрический смысл определенного интеграла?
- 5. Чему равна производная определенного интеграла по переменному верхнему пределу?
- 6. Что такое несобственный интеграл?
- 7. Как определяются пространства R^2 , R^3 , R^n ?
- 8. Найдите интеграл $\int_{0.0}^{1.1} x^2 y^2 dx dy$.
- 9. Найдите общее решение для уравнения
 - 1) $y''-6y'+9y=e^{3x}$;
 - 2) $y''+3'+2y=\cos 2x+2\sin 2x$.
- 10. Найдите интегралы вида:
- 1) $\int x^n dx$; 2) $\int x \cos(nx) dx$; 3) $\int x \sin(nx) dx$;
- $4) \int \cos^2(nx) dx; \quad 5) \int \sin^2(nx) dx; \quad 6) \int \cos(nx) \sin(mx) dx;$

те же интегралы найдите в пределах

- 8) от 0 до π , 9) от - π до π , 10) от 0 до 1. 11) найдите $\int_{0}^{l} cos(\pi n/l) dx$, n=1,2,...
- 11. Что такое скалярное произведение? Какими свойствами оно обладает? Какие векторы называются ортогональными?
- 12. Какой может быть область сходимости степенного ряда?
- 13. Найдите область сходимости ряда

$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n^2 + 1}}.$$

- 14. Сформулируйте задачу Коши для дифференциального уравнения первого порядка.
- 15. Сформулируйте теорему единственности решения задачи Коши для дифференциального уравнения первого порядка.

1. Интегральные уравнения. Основные понятия и определения. Классификация уравнений

Определение: *Интегральными уравнениями* называются уравнения, содержащие неизвестную функцию под знаком интеграла.

Многие задачи математической физики сводятся к линейным интегральным уравнениям.

Определение: Интегральное уравнение называется *линейным*, если в него неизвестная функция входит линейно.

Пример линейного уравнения

$$\varphi(x) - \int_{0}^{1} e^{xy} \varphi(y) dy = x - \frac{e^{x}}{x}, \ 0 \le x \le 1.$$

Пример нелинейного уравнения

$$\varphi(x) - \int_{0}^{1} \frac{xy\varphi(y)}{1 + \varphi^{2}(y)} dy = f(x), \ 0 \le x \le 1.$$

Решить интегральное уравнение — значит найти такую функцию, которая обращает данное уравнение в верное тождество.

Интегральные уравнения подразделяются на *уравнения первого рода* и *уравнения второго рода*. В уравнения первого рода неизвестная функция входит только под знаком интеграла. В уравнения второго неизвестная функция входит как под знаком интеграла, так и вне интеграла.

Уравнения первого и второго рода с постоянными пределами интегрирования называются *уравнениями Фредгольма*, а уравнения с переменным верхним пределом называются *уравнениями Вольтерра*.

Таким образом, линейное интегральное уравнение Фредгольма первого рода имеет вид:

$$\int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b.$$

Линейное интегральное уравнение Фредгольма второго рода имеет вид

$$\varphi(x) - \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b.$$

Линейное интегральное уравнение Вольтерра первого рода имеет вид

$$\int_{a}^{x} K(x, y)\varphi(y)dy = f(x), \ a \le x.$$

Линейное интегральное уравнение Вольтерра второго рода имеет вид

$$\varphi(x) - \int_{a}^{x} K(x, y)\varphi(y)dy = f(x), \ a \le x.$$

Здесь

 $\varphi(x)$ – неизвестная искомая функция;

f(x) — заданная непрерывная функция, называемая *свободным членом* интегрального уравнения;

K(x,y) — заданная непрерывная функция, называемая *ядром* интегрального уравнения.

Уравнения второго рода иногда записывают с параметром λ так:

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \quad a \le x \le b.$$
(1)

или

$$\varphi(x) - \lambda \int_{a}^{x} K(x, y) \varphi(y) dy = f(x), \ a \le x.$$
 (2)

Тогда уравнения (1) или (2) представляют собой не одно уравнение, а семейство уравнений, зависящее от числового параметра λ .

Если f(x) = 0, то интегральное уравнение называется *однородным*, в противном случае оно называется *неоднородным*.

Уравнения Вольтерра более просты, чем уравнения Фредгольма; уравнения второго рода более просты, чем уравнения первого рода. Уравнение Вольтерра можно при некоторых ограничениях рассматривать как частный случай уравнения Фредгольма.

2. Метод последовательных приближений решения интегральных уравнений

2.1. Построение решения уравнения Фредгольма второго рода при малых значениях параметра методом последовательных приближений.

Будем рассматривать интегральное уравнение Фредгольма второго рода

$$\varphi(x) - \lambda \int_{a}^{b} K(x, y)\varphi(y)dy = f(x), \ a \le x \le b,$$
(3)

где ядро K(x,y) и правая часть f(x) — заданные непрерывные функции переменных $x, y, \varphi(x)$ - искомая функция, λ - параметр.

В случае, когда параметр λ мал, т.е. удовлетворяет условию

$$\left|\lambda\right| < \frac{1}{M}$$

где M – положительное число, такое, что

$$\left(\int\limits_{a}^{b}\int\limits_{a}^{b}\left|K(x,y)\right|^{2}dxdy\right)^{\frac{1}{2}}\leq M\quad\text{ или}\quad\int\limits_{a}^{b}\left|K(x,y)\right|dy\leq M\,,\,a\leq x\leq b\,,$$

решение $\varphi(x)$ уравнения (3) существует и его можно построить *методом по*следовательных приближений.

Суть метода: функция $\varphi(x)$ ищется в виде предела последовательности $\varphi_0(x) = f(x),$

$$\varphi_n(x) = f(x) + \lambda \int_a^b K(x, y) \varphi_{n-1}(y) dy, n = 1, 2, ...$$
 (4)

T.e.

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$$

и других решений уравнение (3) не имеет.

Методом последовательных приближений найти решение уравнения Фредгольма 2-го рода, предварительно убедившись, что выполнено условие

$$\left|\lambda\right| < \frac{1}{M} = \left(\int_{a}^{b} \int_{a}^{b} \left|K(x, y)\right|^{2} dx dy\right)^{-\frac{1}{2}}$$

$$(5)$$

1.
$$\varphi(x) - \int_{a}^{b} xy \varphi(y) dy = 2x$$
.

$$\frac{\text{Решение.}}{\left(\iint\limits_{a}^{b} |K(x,y)|^{2} dx dy\right)} = M^{2} = \iint\limits_{a}^{b} x^{2} y^{2} dx dy = 1/9.$$

Значит M=1/3, $|\lambda|=1<\frac{1}{1/3}=3$. Следовательно, условие (5) выполнено.

Построим последовательность приближенных решений (4) $\varphi_0(x) = 2x$

$$\varphi_n(x) = 2x + 1 \cdot \int_a^b xy \varphi_{n-1}(y) dy, n = 1,2,...$$

т.е.

$$\varphi_1(x) = 2x + 1 \cdot \int_a^b xy 2y dy = 2x + 2x \frac{1}{3};$$

$$\varphi_2(x) = 2x + 1 \cdot \int_a^b xy(2y + y\frac{2}{3})dy = 2x + 2x(\frac{1}{3} + \frac{1}{9});$$

$$\varphi_2(x) = 2x + 1 \cdot \int_a^b xy(2y + y\frac{2}{3})dy = 2x + 2x(\frac{1}{3} + \frac{1}{9});$$

$$\varphi_3(x) = 2x + 1 \cdot \int_a^b xy(2y + y(\frac{2}{3} + \frac{2}{9}))dy = 2x + 2x(\frac{1}{3} + \frac{1}{9} + \frac{1}{27});$$

$$\varphi_n(x) = 2x + 2x(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{3^{n-1}});$$

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x).$$

Т.к. сумма убывающей геометрической прогрессии

$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \frac{b_1}{1 - q} = \frac{1/3}{1 - 1/3} = \frac{1}{2}$$
, To

$$\varphi(x) = 2x + 2x \cdot \frac{1}{2} = 3x.$$

2.
$$\varphi(x) + \frac{1}{\pi} \int_{0}^{\pi} \cos^2 y \varphi(y) dy = 1.$$

Otbet: $\varphi(x) = \frac{2}{3}$.

3.
$$y(x) - \frac{1}{2\pi} \int_{0}^{\pi} \sin x \, y(t) t dt = 2\sin x.$$

Other: $y(x) = 4\sin x$.

4.
$$y(x) - \pi \int_{0}^{1} (1-x) \sin 2\pi t \ y(t) dt = \frac{1}{2} (1-x).$$

OTBET: y(x) = 1 - x.

$$\mathbf{5.} \ \varphi(x) - \frac{1}{2} \int_{0}^{1} \varphi(y) dy = \sin \pi x.$$

Ответ: $\varphi(x) = \sin \pi x + \frac{2}{\pi}$.

2.2. Построение решения уравнения Вольтерра второго рода методом последовательных приближений.

Будем рассматривать интегральное уравнение Вольтерра второго рода

$$\varphi(x) - \lambda \int_{a}^{x} K(x, y)\varphi(y)dy = f(x), \ a \le x.$$
(6)

Mетодом последовательных приближений функция $\phi(x)$ ищется в виде предела последовательности

$$\varphi_0(x) = f(x),$$

$$\varphi_n(x) = f(x) + \lambda \int_{a}^{x} K(x, y) \varphi_{n-1}(y) dy, \quad n = 1, 2, ...,$$
(7)

т.е.

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x). \tag{8}$$

Интегральное уравнение Вольтерра (6) при требовании непрерывности его ядра K(x,y)и правой части f(x) имеет единственное решение (8) для каждого конечного значения параметра λ .

Этим существенно отличается интегральное уравнение Вольтерра второго рода от интегрального уравнения Фредгольма 2-го рода, которое, как будет по-казано ниже, не для каждого λ может иметь решение, а при некоторых λ , оно может иметь даже несколько решений.

Обычно полагают $\varphi_0(x) = f(x)$, однако это вовсе не обязательно: удачный выбор ненулевого приближения часто позволяет ускорить сходимость последовательности $\varphi_n(x)$ к точному решению.

Методом последовательных приближений найти решение уравнения Вольтерра 2-го рода:

6.
$$\varphi(x) = 1 - \int_{0}^{x} (x - y)\varphi(y)dy$$
.

<u>Решение.</u> Положим

$$\overline{\varphi_0(x)} = 1.$$

Тогда

$$\begin{split} \varphi_1(x) &= 1 - \int\limits_0^x (x - y) dy = 1 - \frac{x^2}{2} = 1 - \frac{x^2}{2!} \,, \\ \varphi_2(x) &= 1 - \int\limits_0^x (x - y) (1 - \frac{y^2}{2!}) dy = 1 - \frac{x^2}{2} + \frac{x^4}{24} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \,, \\ \varphi_3(x) &= 1 - \int\limits_0^x (x - y) (1 - \frac{y^2}{2!} + \frac{y^4}{4!}) dy = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \,. \end{split}$$

. . .

Для *п*-ого приближения

$$\varphi_n(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \dots + (-1)^n \frac{x^{2n}}{(2n)!} = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!}.$$

Тогда решение уравнения

$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = \cos x.$$

 Π р о в е р к а: Подставим $\varphi(x) = \cos x$ в исходное уравнение

$$\varphi(x) = 1 - \int_{0}^{x} (x - y)\varphi(y)dy.$$

Получим

$$\cos x = 1 - \int_0^x x \cos x dy + \int_0^x y \cos x dy. \tag{9}$$

Находим первый интеграл

$$\int_{0}^{x} x \cos x dy = x \sin y \Big|_{0}^{x} = x \sin x.$$
 (10)

Находим второй интеграл

$$\int_{0}^{x} y \cos x dy = \begin{vmatrix} u = x \\ dv = \cos y dy \\ v = \sin y \\ du = dy \end{vmatrix} = y \sin y \begin{vmatrix} x \\ 0 = x \sin y + \cos x - 1.$$
 (11)

Подставим (10), (11) в (9) $\cos x = 1 - x \sin x + x \sin x + \cos - 1$, $\cos x = \cos x$ - верно.

Ответ: $\varphi(x) = \cos x$.

7.
$$\varphi(x) = 1 + \int_{0}^{x} \varphi(y) dy$$
.

Ответ: $\varphi(x) = \exp x$.

8.
$$y(x) = 1 - x^2 + \int_0^x xy(t)dt$$
.
a) $y_0(x) = 1 - x^2$; **6)** $y_0(x) = 1$.

Ответ: y(x) = 1.

9.
$$y(x) = x^2 + x - \int_0^x y(t)dt$$
.

a)
$$v_{\alpha}(x) = 1$$
:

a)
$$y_0(x) = 1;$$
 6) $y_0(x) = \frac{x^2}{2} + x.$

Ответ: v(x) = x.

10.
$$\varphi(x) = 1 + \int_{0}^{x} y \varphi(y) dy$$
, $\varphi_0(x) = 1$.

Ответ: $\varphi(x) = \exp(x^2/2)$.

11.
$$\varphi(x) = x - \int_{0}^{x} (x - y)\varphi(y)dy$$
, $\varphi_{0}(x) = 0$.

Ответ: $\varphi(x) = \sin x$.

12.
$$\varphi(x) = 1 - \int_{0}^{x} (x - y)\varphi(y)dy$$
, $\varphi_{0}(x) = 0$.

Otbet: $\varphi(x) = ch x$.

13.
$$\varphi(x) = 2^x + \int_0^x 2^{x-y} \varphi(y) dy$$
, $\varphi_0(x) = 0$.

Ответ: $\varphi(x) = (2e)^x$.

3. Интегральные уравнения с вырожденными ядрами

3.1 Решение уравнений Фредгольма 2-го рода с вырожденным ядром.

Ядро K(x,y) называется вырожденным, если оно имеет вид

$$K(x,y) = \sum_{i=1}^{n} p_i(x)q_i(y).$$
 (12)

Соответствующее интегральное уравнение (1)

$$\varphi(x) - \lambda \int_{a}^{b} \left(\sum_{i=1}^{n} p_i(x) q_i(y) \right) \varphi(y) dy = f(x)$$
(13)

решается путем сведения к системе линейных алгебраических уравнений следующим образом.

Перепишем уравнение (13) в виде

$$\varphi(x) - \lambda \sum_{i=1}^{n} c_i p_i(x) = f(x), \tag{14}$$

где неизвестные c_i определяются через искомое решение $\varphi(x)$ равенствами

$$c_{i} = \int_{a}^{b} q_{i}(y)\varphi(y)dy, \quad i = 1, 2, ..., n$$
(15)