• •

ЗБЫНЕК НАДЕНИК

ШАРОВЫЕ ФУНКЦИИ ДЛЯ ГЕОДЕЗИИ

Математическая подготовка к изучению книги В.А. Хеисканена - Г. Морица «Физическая геодезия», 1967 г.

перевод с чешского доктора технических наук М.И. Юркиной под редакцией доктора технических наук Е.М. Мазуровой

Рекомендовано УМО по образованию в области геодезии и фотограмметрии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки 650300 – «Геодезия» специальностей 300200 – «Астрономогеодезия», 300500 – «Космическая геодезия»

Издательство МИИГАиК Москва 2010

УДК 528.2 H 17

Рецензенты:

Государственный университет по землеустройству доктор техн. наук **В.Н. Баранов**

МИИГАиК кандидат физ.-мат. наук **А.А. Зайцев**

Збынек Наденик

Н 17 Шаровые функции для геодезии: Перевод с чешского М.И. Юркина / Под редакцией Е.М. Мазуровой. – М.: Изд-во МИИГАиК, 2010. – 157 с.: ил.

ISBN 978-5-91188-023-1

Физическая геодезия неразрывно связана с изучением теории потенциала, в которой широкое применение нашли, так называемые, шаровые и сферические функции. В доступной и ясной форме излагаются основы теории сферических и шаровых функций и использование их при разложении потенциала силы тяжести в ряды по сферическим или шаровым функциям. Логика изложения обусловлена желанием автора опираться только на те сведения из математического анализа, которые известны студентам 3-го курса технических специальностей. Значительное приложение полиномов Лежандра и присоединенных полиномов Лежандра степеней $0 \le n \le 15$ делает учебник хорошим справочником.

Для студентов геодезических специальностей, магистров и аспирантов, инженеров, занимающихся изучением теории фигуры Земли, других небесных тел и их внешнего гравитационного поля.

УДК 528.2

[©] Оформление обложки МИИГАиК, 2010

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ РЕДАКТОРА ПЕРЕВОДА	5
ПРЕДИСЛОВИЕ К РУССКОМУ ИЗДАНИЮ	6
Введение	6
О содержании	6
Историческое примечание	8
Литература	12
ГЛАВА І. ВВЕДЕНИЕ	22
1. Основная мотивация	22
2. Ортогональные системы в геодезии	26
3. Плоский случай	29
ГЛАВА II. ПОЛИНОМЫ ЛЕЖАНДРА	34
1. Определение и основные свойства	34
2. Ортогональность полиномов Лежандра	39
3. Норма полинома Лежандра	41
4. Дифференциальное уравнение Лежандра	42
5. Ортогональность (продолжение)	44
6. Производящая функция полиномов Лежандра	48
7. Комментарий к разложению функции в ряды по полиномам Лежандра	50
8. Функции Лежандра второго рода	54
ГЛАВА III. ПРИСОЕДИНЕННЫЕ ФУНКЦИИ ЛЕЖАНДРА	58
1. Определение и основные свойства	58
2. Ортогональность и норма	60
3. Обобщенное дифференциальное уравнение Лежандра	63
ГЛАВА IV. СФЕРИЧЕСКИЕ ФУНКЦИИ	65
1. Определение и классификация	65
2. Ортогональность сферических функций	68
3. Норма. Ряд и коэффициенты Фурье	71
4. Теорема сложения	73
ГЛАВА V. ШАРОВЫЕ ФУНКЦИИ	79
1. Уравнение Лапласа в прямоугольных координатах	79
2. Шаровые функции как решение уравнения Лапласа	83
3. Оператор Лапласа в сферических (пространственных полярных) координатах	91
4. Шаровые функции как решения уравнения Лапласа – развитие идеи	94
5. Общий вид шаровой функции	98
6. Формула Грина. Ортогональность	102
7. Уравнение Лапласа в ортогональных криволинейных координатах	106
8. Уравнение Лапласа в координатах, которые являются особым случаем	
эллипсоидальных координат	
ДОПОЛНЕНИЕ: ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ СЛОЖЕНИЯ	119

• •

. **Ä**

4

А. Подготовка – рекуррентные соотношения	119
В. Собственно доказательство	123
ПРИЛОЖЕНИЕ	132
ЛИТЕРАТУРА	140
ПОСЛЕСЛОВИЕ ПЕРЕВОДЧИКА	145
ЛИТЕРАТУРА	150
ИМЕННОЙ УКАЗАТЕЛЬ	153