Министерство образования и науки Российской Федерации Сибирский федеральный университет

С. Г. Шахрай, В. В. Коростовенко И. И. Ребрик

СОВЕРШЕНСТВОВАНИЕ СИСТЕМ КОЛОКОЛЬНОГО ГАЗООТСОСА НА МОЩНЫХ ЭЛЕКТРОЛИЗЕРАХ СОДЕРБЕРГА

Монография

Красноярск ИПК СФУ 2010 УДК 502.3:669.7 ББК 34.314.4 Ш31

Рецензенты:

А. Н. Анушенков, д-р техн. наук, проф. гл. науч. сотрудник Краснояр. науч. центра СО РАН;

Л. С. Стрижко, д-р наук, проф. НИТУ «МИСиС»

Шахрай, С. Г.

Ш31 Совершенствование систем колокольного газоотсоса на мощных электролизерах Содерберга : монография / С. Г. Шахрай, В. В. Коростовенко, И. И. Ребрик. – Красноярск: ИПК СФУ, 2010. – 146 с. ISBN 978-5-7638-1938-0

В монографии выполнен анализ состава анодного газа с позиций промышленной и экологической опасности по всей номенклатуре загрязнителей. Приведены физико-химические и токсикологические характеристики газообразных и твердых полютантов. Изложены аналитические исследования по оценке современного состояния системы сбора, эвакуации и обезвреживания анодных газов; приведены отечественные и зарубежные технические решения в части оптимизации систем газоотсоса и газоочистки. Описаны методы и технические решения по сокращению выбросов загрязнителей и экологизации систем газоотсоса, а также дано экономическое обоснование новых решений.

Для специалистов, решающих проблему очистки отходящих газов в металлургии легких металлов, и студентов металлургических специальностей.

УДК 502.3:669.7 ББК 34.314.4

- © Сибирский федеральный университет, 2010
- © Оформление, оригинал-макет. ИПК СФУ, 2010

ISBN 978-5-7638-1938-0

ВВЕДЕНИЕ

Производство алюминия электролитическим методом сопровождается выделением из ванн анодных газов, количество которых достигает нескольких десятков кубических метров в час. Анодные газы содержат газообразные примеси (оксидные и фтористые соединения), а также смолистые вещества и пыль, представленную глиноземом, фтористыми солями и углеродом. Концентрация загрязнителей в отходящих газах зависит не только от технологии электролиза, но и от эффективности работы системы сбора выбросов, обеспечения оптимальных параметров движения газов в газоходных коммуникациях, достижения необходимой степени очистки в аппаратах защиты атмосферы.

Как известно, радикальное направление защиты атмосферы состоит из системы инженерных решений по полной ликвидации или очистке до нормативных величин загрязнителей всех видов в организованных выбросах, а также по созданию систем воздухообмена, исключающих наличие неорганизованных (рассеивающихся в рабочей зоне) выбросов. С точки зрения ужесточающихся экологических требований такое направление имеет исключительное значение для алюминиевого производства с использованием мощных электролизеров Содерберга, которое характеризуется рядом объективных причин, затрудняющих экологизацию процесса. При наличии приходящихся на 1 тонну алюминия исходных выбросов с высокими концентрациями загрязнителей системы сбора и их эвакуации на отечественных алюминиевых заводах не всегда соответствуют нормативным требованиям, в частности, до 60 % пылевых выбросов представлены фракцией до 2 мкм, улавливание которой само по себе представляет известную трудность, причем именно с этой фракцией связано до 80 % выбросов опасных смолистых веществ.

В настоящей работе предпринята попытка повысить экологичность процесса электролитического производства алюминия за счет внедрения новых технических решений в системах колокольного газоотсоса.

1. ОСОБЕННОСТИ ПРОБЛЕМЫ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ НА АЛЮМИНИЕВЫХ ЗАВОДАХ

Право российских граждан на благоприятную окружающую среду закреплено Конституцией РФ и рядом нормативных документов в области природоохраны и природопользования [1; 2; 3].

Постоянно растущее внимание общественности к экологии обостряет проблему снижения техногенного влияния алюминиевых заводов на природную среду. Как следствие, ужесточаются штрафные санкции за вредные выбросы во всех странах, производящих алюминий.

Предприятиями цветной металлургии России в окружающую среду ежегодно выбрасывается около 3 млн т вредных веществ, из которых значительная часть приходится на алюминиевую промышленность. Обусловлено это техническим несовершенством производства и устаревшими технологиями с образованием значительного количества выбросов и отходов [4].

Специфика производства алюминия в России обусловлена эксплуатацией трех типов электролизеров: с самообжигающимися анодами и верхним токоподводом (ВТ), самообжигающимся анодом и боковым токоподводом (БТ) и с предварительно обожженными анодами (ОА).

В настоящее время в России алюминий производится на 11 алюминиевых заводах, в т. ч. на электролизерах ВТ — Братском, Красноярском, Иркутском, Волгоградском и Новокузнецком; электролизерах БТ — Новокузнецком, Кандалакшском, Надвоицком, Уральском и Богословском; электролизерах ОА — Саяногорском, Волховском и Уральском. На долю самых современных заводов, оборудованных электролизерами с ОА и соответствующих международным экологическим стандартам, приходится только 11 % производимого металла.

Доминирующим является производство алюминия в электролизерах с самообжигающимися анодами или анодами Содерберга, на долю которых приходится около 85 % отечественного металла. Технология характеризуется более низкой в сравнении с производством на электролизерах с предварительно обожженными анодами себестоимостью производимого металла. В зависимости от состояния рынка сырья и энергии она может составлять 40–140 долл./т Al [5], что является значительной величиной, особенно в периоды экономических кризисов и спадов производства.

В течение последних 30 лет рыночная стоимость алюминия испытывала значительные колебания. По истечении периода «хороших рыночных цен», длящегося, как правило, два-три года, следует ценовой спад. В эти периоды, продолжительность которых может достигать семи-восьми лет,

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. ОСОБЕННОСТИ ПРОБЛЕМЫ ОЧИСТКИ	
ОТХОДЯЩИХ ГАЗОВ НА АЛЮМИНИЕВЫХ ЗАВОДАХ	4
2. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И ТОКСИКОЛОГИЧЕСКАЯ	
ХАРАКТЕРИСТИКА КОМПОНЕНТОВ АНОДНОГО ГАЗА	
2.1. Газообразные соединения группы оксидов	
2.2. Газообразные и твердые соединения фтора	17
2.3. Сульфидные газообразные загрязнители	24
2.4. Твердые компоненты анодного газа	28
2.5. Образование оксида углерода и смолистых веществ,	22
в том числе бенз(а)пирена	32
3. СОВРЕМЕННОЕ СОСТОЯНИЕ СИСТЕМЫ СБОРА, ЭВАКУАЦИИ	22
И ОБЕЗВРЕЖИВАНИЯ АНОДНЫХ ГАЗОВ	
3.1. Газосборный колокол3.2. Горелочные устройства	
3.3. Пылеосадительные камеры	
3.4. Газоходные тракты корпусов электролиза	
3.5. Анализ причин неравномерности объемов газоотсоса от электролизеров	01
и образования в газоходах отложений	63
3.6. Обзор известных способов удаления из газоходов пылевых отложений	68
4. СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ СБОРА,	
ЭВАКУАЦИИ И ОБЕЗВРЕЖИВАНИЯ АНОДНЫХ ГАЗОВ	72
4.1. Модернизация газосборного колокола	
4.2. Модернизация горелочных устройств	
4.3. Расчет оптимальных параметров и моделирование теплофизических процес	
в щелевых горелочных устройствах	80
4.4. Система автоматической очистки полостей горелочных устройств от отложений	92
4.5. Модернизация газоходной сети корпуса электролиза	85 85
4.6. Очистка газоходов от отложений закрученным потоком сжатого воздуха	
4.7. Электроизоляционные разрывы газоходов	
5. УКРУПНЕННАЯ ЭКОЛОГО-ЭКОНОМИЧЕСКАЯ ОЦЕНКА	
ВНЕДРЕНИЯ ПРЕДЛАГАЕМЫХ ТЕХНИЧЕСКИХ РЕШЕНИЙ	103
ЗАКЛЮЧЕНИЕ	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	110
Приложение 1	110
Расчет количества анодных газов, образующихся на электролизерах С-8; С-8БМ	119
Приложение 2	
Расчет аэродинамических характеристик подколокольных	107
пространств электролизеров	125
Приложение 3	105
Расчет объемов газоотсоса от электролизера	127
Приложение 4	
Сравнительные характеристики вытяжных тройников	132
Приложение 5	
Результаты моделирования газоходных сетей	136