Ä

УДК 53(075.8) ББК 22.3я73 К89

Кузнецов С.И.

К89 Физика. Ч. II. Электричество и магнетизм. Электромагнитные колебания и волны: учебное пособие / С.И. Кузнецов; Томский политехнический университет. — 3-е изд., перераб. и доп. — Томск: Изд-во Томского политехнического университета, 2011. — 248 с.

В пособии рассмотрены свойства материи, связанные с наличием в природе электрических зарядов, которые определяют возникновение электромагнитных полей. Даны разъяснения основных законов, явлений и понятий электромагнетизма. Рассмотрены законы, связанные с электромагнитными колебаниями и распространением волн. Раскрыты принципы теоретических и экспериментальных исследований электромагнитных волн и связь между оптическими и электромагнитными явлениями.

Цель пособия – помочь студентам освоить материал программы, научить активно применять теоретические основы физики как рабочий аппарат, позволяющий решать конкретные задачи, связанные с повышением ресурсоэффективности.

Предназначено для межвузовского использования студентами технических специальностей очной и дистанционной формы обучения.

УДК 53(075.8) ББК 22.3я73

Рецензенты

Доктор физико-математических наук, профессор заведующий кафедрой теоретической физики ТГУ *А.В. Шаповалов*

Доктор физико-математических наук, профессор заведующий кафедрой общей информатики ТГПУ $A.\Gamma.\ \Pi$ арфенов

- © ГОУ ВПО НИ ТПУ, 2006
- © Кузнецов С.И., 2006
- © Обложка. Издательство Томского политехнического университета, 2011

• •

Ä

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	7
1. ЭЛЕКТРОСТАТИКА И ПОСТОЯННЫЙ ТОК	8
1.1. Электростатическое поле в вакууме	
1.1.1. Электрический заряд. Закон сохранения электрического заряд	
1.1.2. Взаимодействие электрических зарядов в вакууме. Закон Куло	
1.1.3. Электростатическое поле. Напряженность поля	
1.1.4. Сложение электростатических полей. Принцип суперпозиции	
1.1.5. Электростатическое поле диполя	
Контрольные ворпосы. Упражнения	
1.2. Теорема Остроградского – Гаусса	
1.2.1. Силовые линии электростатического поля	
1.2.2. Поток вектора напряженности	
1.2.3. Теорема Остроградского – Гаусса	
1.2.4. Дифференциальная форма теоремы Остроградского – Гаусса.	
1.2.5. Вычисление электрических полей	
с помощью теоремы Остроградского – Гаусса	20
Контрольные вопросы. Упражнения	26
1.3. Потенциальная энергия и работа электростатического поля.	
Связь напряженности с потенциалом	27
1.3.1. Работа сил электростатического поля	
1.3.2. Потенциальная энергия	
1.3.3. Потенциал. Разность потенциалов	
1.3.4. Связь между напряженностью и потенциалом	
1.3.5. Безвихревой характер электростатического поля	
1.3.6. Силовые линии и эквипотенциальные поверхности	
1.3.7. Расчет потенциалов простейших электростатических полей	
Контрольные вопросы. Упражнения	
1.4. Диэлектрики в электростатическом поле	
1.4.1. Поляризация диэлектриков	
1.4.2. Различные виды диэлектриков	
1.4.3. Вектор электрического смещения $\vec{\mathbf{D}}$	
1.4.4. Поток вектора электрического смещения.	
Теорема Остроградского – Гаусса для $ ec{ extsf{D}} $	49
1.4.5. Изменение \vec{E} и \vec{D} на границе раздела двух диэлектриков	50
Контрольные вопросы. Упражнения	52
1.5. Проводники в электростатическом поле	53
1.5.1. Напряженность и потенциал электростатического поля	
в проводнике	53
1.5.2. Определение напряженности поля вблизи поверхности	
заряженного проводника	54
1.5.3. Экспериментальная проверка распределения заряда	
на проводнике	
Контрольные вопросы. Упражнения	58
1.6. Конденсаторы	59

1.6.1. Электрическая емкость	59
1.6.2. Соединение конденсаторов	60
1.6.3. Расчет емкостей различных конденсаторов	62
1.6.4. Энергия электростатического поля	
Контрольные вопросы. Упражнения	67
1.7. Постоянный электрический ток	69
1.7.1. Xарактеристики электрического тока	
1.7.2. Уравнение непрерывности	70
1.7.3. Сторонние силы и ЭДС	71
1.7.4. Закон Ома для неоднородного участка цепи	71
1.7.5. Закон Ома в дифференциальной форме	73
1.7.6. Работа и мощность тока. Закон Джоуля – Ленца	
Контрольные вопросы. Упражнения	77
1.8. Электрический ток в металлах, полупроводниках и электролит	гах 78
1.8.1. Электрический ток в металлах	
1.8.2. Электрический ток в полупроводниках	
1.8.3. Сверхпроводимость	
1.8.4. Эмиссия электронов из проводников	
1.8.5. Контактные явления на границе раздела двух проводников	
1.8.6. Электрический ток в электролитах	
Контрольные вопросы. Упражнения	
1.9. Электрический ток в газах	
1.9.1. Явление ионизации и рекомбинации в газах	
1.9.2. Несамостоятельный газовый разряд	
1.9.3. Самостоятельный газовый разряд	
1.9.4. Типы разрядов	
1.9.5. Применение газового разряда	
1.9.6. Понятие о плазме	113
Контрольные вопросы. Упражнения	118
Раздел 2. ЭЛЕКТРОМАГНЕТИЗМ	
2.1. Магнитное поле	
2.1.1. Магнитные взаимодействия	
2.1.2. Закон Био – Савара – Лапласа	
2.1.3. Магнитное поле движущегося заряда	
2.1.4. Напряженность магнитного поля	
2.1.5. Магнитное поле прямого тока	
2.1.6. Теорема Гаусса для вектора магнитной индукции	
Контрольные вопросы. Упражнения	
2.2. Силы, действующие на движущиеся заряды в магнитном поле	
2.2.1. Закон Ампера	
2.2.2. Взаимодействие двух параллельных проводников с током	
2.2.3. Воздействие магнитного поля на рамку с током	
2.2.4. Единицы измерения магнитных величин	
2.2.5. Сила Лоренца	
Контрольные вопросы. Упражнения	
2.3. Циркуляция вектора магнитной индукции	
2.3.1. Теорема о циркуляции вектора магнитной индукции	134

2.3.2. Магнитное поле соленоида	136
2.3.3. Магнитное поле тороида	139
2.3.4. Работа по перемещению проводника	
с током в магнитном поле	139
2.3.5. Эффект Холла	142
Контрольные вопросы. Упражнения	143
2.4. Явление электромагнитной индукции	
2.4.1. Опыты Фарадея. Индукционный ток. Правило Ленца	144
2.4.2. Величина ЭДС индукции	145
2.4.3. Природа ЭДС индукции	147
2.4.4. Циркуляция вектора напряженности	
вихревого электрического поля	
2.4.5. Токи Фуко (вихревые токи)	150
2.4.6. Скин-эффект	152
Контрольные вопросы. Упражнения	154
2.5. Ускорители заряженных частиц	
2.5.1. Классификация ускорителей	
2.5.2. Линейные ускорители	155
2.5.3. Циклические ускорители	156
2.5.4. Большой адронный коллайдер	156
Контрольные вопросы. Упражнения	164
2.6. Самоиндукция и взаимная индукция	165
2.6.1. Явление самоиндукции	165
2.6.2. Влияние самоиндукции на ток при замыкании	
и размыкании цепи, содержащей индуктивность	
2.6.3. Взаимная индукция	
2.6.4. Индуктивность трансформатора	169
2.6.5. Энергия магнитного поля	170
Контрольные вопросы. Упражнения 172	
2.7. Магнитные свойства вещества	174
2.7.1. Магнитные моменты электронов и атомов	
2.7.2. Атом в магнитном поле	
2.7.3. Магнитное поле в веществе	
2.7.4. Диамагнетики и парамагнетики в магнитном поле	181
2.7.5. Ферромагнетики	
Контрольные вопросы. Упражнения	
2.8. Уравнения Максвелла	
2.8.1. Закон полного тока	
2.8.2. Ток смещения	188
2.8.3. Единая теория электрических и магнитных явлений.	
Система уравнений Максвелла	
2.8.4. Пояснение к теории классической электродинамики	
2.8.5. Скорость распространения ЭМП	195
2.8.6. Релятивистская трактовка магнитных явлений	
(общие положения)	
Контрольные вопросы. Упражнения	198

×
Δ
\boldsymbol{n}

3. ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ	199
3.1. Электрические колебания	199
3.1.1. Квазистационарные токи	199
3.1.2. Свободные колебания в электрическом контуре	
без активного сопротивления	199
3.1.3. Свободные затухающие электрические колебания	201
3.1.4. Вынужденные электрические колебания. Резонанс	204
3.1.5. Мощность, выделяемая в цепи переменного тока	208
Контрольные вопросы. Упражнения	209
3.2. Электромагнитные волны	211
3.2.1. Генерация электромагнитных волн	211
3.2.2. Дифференциальные уравнения ЭМВ	213
3.2.3. Экспериментальное исследование ЭМВ	215
3.2.4. Энергия и импульс электромагнитного поля	218
Контрольные вопросы. Упражнения	
ЗАКЛЮЧЕНИЕ	224
СПИСОК ЛИТЕРАТУРЫ	225
ОСНОВНЫЕ ЗАКОНЫ И ФОРМУЛЫ	226
ГЛОССАРИЙ	239
ПРИЛОЖЕНИЕ	245
Значения фундаментальных констант	245
Греческий алфавит	245
Множители и приставки для образования десятичных кратных	
и дольных единиц и их наименований	245
Производные единицы СИ, имеющие собственные наименования	246
Работа выхода электрона из металлов	246
Подвижность ионов в электролитах	247
Диэлектрические проницаемости	247
Удельное электросопротивление некоторых материалов	247