M565

Рецензенты:

кафедра электроники и электротехники Национального исследовательского Мордовского государственного университета им. Н.П. Огарева;

В.Р. Храмшин, д-р техн. наук, проф. Магнитогорского государственного технического университета им. Г.И. Носова

Мещеряков, В.Н.

М565 Скорректированные системы частотного асинхронного электропривода: учебное пособие / В.Н. Мещеряков, О.В. Данилова. – Липецк : Изд-во Липецкого государственного технического университета, 2022. – 81 с. – Текст : непосредственный.

ISBN 978-5-00175-151-9

В учебном пособии рассматривается математическое описание частотного асинхронного электропривода, анализируется режим оптимального управления с обеспечением минимума тока статора, приводятся схемные решения с реализацией оптимальных режимов с помощью корректирующих средств.

Предназначено для магистрантов направления «Электроэнергетика и электротехника», аспирантов направления «Электро- и теплоэнергетика», может быть полезным для студентов направления «Мехатроника и робототехника».

Табл. 2. Ил. 40. Библиогр.: 31 назв.

УДК 621.313.33(07)

ISBN 978-5-00175-151-9

© ФГБОУ ВО «Липецкий государственный технический университет», 2022 © Мещеряков В.Н., Данилова О.В., 2022

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. ПРИНЦИПЫ ЧАСТОТНОГО УПРАВЛЕНИЯ АСИНХРОННЕ	οIM
ДВИГАТЕЛЕМ, ОБЕСПЕЧИВАЮЩИЕ МИНИМИЗАЦІ	ИЮ
ПОТРЕБЛЕНИЯ ТОКА СТАТОРА	5
1.1. Математическое описание установившегося режима асинхронного	0
двигателя при частотном управлении	
1.2. Анализ влияния взаимного положения моментообразующих векто	орог
переменных и абсолютного скольжения на момент асинхрон	ного
двигателя	. 14
1.3. Экспериментальное определение оптимального абсолюти	НОГО
отклонения скоростей асинхронного двигателя	33
2. СИСТЕМЫ ЧАСТОТНОГО АСИНХРОННОГО ЭЛЕКТРОПРИВО	ЭΠΑ
С ОПТИМАЛЬНЫМ УПРАВЛЕНИЕМ	
2.1. Система векторного управления с регулированием продоль	
составляющей вектора тока статора	
2.2. Оптимизированная система асинхронного электроприв	
с частотно-токовым управлением	52
2.3. Скорректированные системы частотного асинхронн	ОГО
электропривода со скалярным управлением	. 62
ЗАКЛЮЧЕНИЕ	75
БИБПИОГРАФИЧЕСКИЙ СПИСОК	77