УДК 519.6:519.21 ББК 22.193+22.311+26.233 М 34 Печатается по решению редакционно-издательского совета Северо-Кавказского федерального университета

М 34 Математические модели и вычислительный эксперимент в проблеме контроля и прогноза экологического состояния атмосферы: монография / В. И. Наац, И. Э. Наац, Р. А. Рыскаленко, Е. П. Ярцева. — Ставрополь: Изд-во СКФУ, 2016. — 376 с.

ISBN 978-5-9296-0867-4

В монографии изложены достижения в области математического и численного моделирования нестационарного переноса загрязняющих примесей в пограничном слое атмосферы. Излагаются вопросы, связанные с решением обратных задач и разработкой качественных расчетно-аналитических моделей в проблеме контроля и прогноза экологического состояния атмосферы. Выполняется разработка соответствующих вычислительных моделей и эффективных алгоритмов для решения задач прогноза переноса и рассеяния аэрозолей, использующих оперативную информацию метеорологического характера.

Адресована студентам, научным работникам и специалистам в области математического моделирования и создания информационно-вычислительного обеспечения систем экологического мониторинга и прогноза, решения других прикладных задач, связанных с охраной окружающей среды.

УДК 519.6:519.21 ББК 22.193+22.311+26.233

Авторы:

д-р физ.-мат. наук, профессор В. И. Наац, д-р физ.-мат. наук, профессор И. Э. Наац, канд. физ.-мат. наук, доцент Р. А. Рыскаленко, канд. физ.-мат. наук, доцент Е. П. Ярцева

Рецензент

д-р физ.-мат. наук, доцент **Р. Г. Закинян** (Московский государственный университет приборостроения и информатики (филиал))

© Наац В. И., Наац И. Э., Рыскаленко Р. А., Ярцева Е. П., 2016 © ФГАОУ ВО «Северо-Кавказский федеральный университет», 2016

ISBN 978-5-9296-0867-4

СОДЕРЖАНИЕ

Предислов	ие8
моделиров	аправления и достижения в области математического ания динамики атмосферных процессов применительно е экологического мониторинга атмосферы12
1.1.	Общая характеристика проблемы экологического
1.2.	мониторинга атмосферы
1.3.	Пограничного слоя атмосферы
1.4.	Уравнение Навье – Стокса в математических моделях аэрогидродинамики и численные методы его решения34
1.5.	Вычислительные схемы для моделирования диффузного переноса примесей в атмосфере с использованием метода
1.6.	покоординатного расщепления
1.7.	Расщепление уравнения переноса по физическим факторам 50 Определение исходных данных на основе сопутствующих математических моделей в задаче моделирования
	нестационарного диффузного переноса примесей в пограничном слое атмосферы, вычислительная схема
1.8.	решения
	аметризованных моделей в задачах переноса субстанции
	ином слое атмосферы. Моделирование исходных данных. и результаты вычислительного эксперимента71
2.1.	Метод параметризованных моделей в задачах переноса субстанции в пограничном слое атмосферы72
2.2.	Вычислительная параметризованная модель на основе конечно-разностного метода

Ä

2.3.	вычислительного эксперимента. Моделирование
	исходных данных
2.4.	Методика проведения численных исследований.
	Результаты вычислительного эксперимента, проводимого
	на примере сеточных моделей и тестовой задачи89
2.5.	Численные исследования конечно-разностной
	аппроксимации производных эмпирических данных
	в граничных узлах сетки
2.6.	Метод покоординатного расщепления в вычислительной
	параметризованной модели переноса примесей для случая
	трех пространственных переменных. Моделирование
	исходных данных101
2.7.	Построение рекурсивного алгоритма для трехмерного
	нестационарного уравнения переноса в рамках
	конечно-разностного подхода
2.8.	Результаты численных экспериментов
уравнения	ие интегральных представлений для решения г диффузного переноса субстанции в атмосфере. ные расчетно-аналитические модели
	вно-итерационные алгоритмы120
3.1.	
	Итерационный метод численного решения задач переноса
	примесей на основе интегральных представлений
3.2.	, , , , , , , , , , , , , , , , , , ,
3.3.	
	эксперимента, проводимого на основе тестовой задачи
	«Блок исходных данных»
3.4.	Построение и численные исследования первой
	расчетно-аналитической качественной модели
	диффузного переноса субстанции в атмосфере на основе
	фундаментальной системы решений уравнений
	параболического типа
3.5.	Построение и численные исследования второй
	расчетно-аналитической качественной модели диффузного
	переноса субстанции в атмосфере на основе интегрального
	представления решения краевой задачи146
3.6.	Вопросы сходимости рекурсивно-итерационных
	алгоритмов, соответствующих расчетно-аналитическим

:	3.7.	Построение рекурсивно-итерационного алгоритма для трехмерного нестационарного уравнения переноса на основе аналитических качественных моделей	
	• •	и метода покоординатного расщепления	
	3.8.	Результаты численных экспериментов	168
ГЛАВА			
		вадачи и качественные модели в проблеме усвоения	
		ниторинга моделями переноса аэрозолей в пограничном	100
		реры	100
•	4.1.		
		из уравнения переноса методом обратной задачи.	
		Построение вычислительной модели	
		и регуляризирующего алгоритма	182
•	4.2	Постановка и результаты вычислительного эксперимента	
		для обратной коэффициентной задачи	191
•	4.3.	Модели переноса на основе априорных оценок значений	
		коэффициента турбулентности, определяемых	
		по дифференциальным характеристикам поля скорости	
		ветра в пограничном слое атмосферы	201
•	4.4.	Обратные коэффициентные задачи для уравнений	
		непрерывности поля скорости ветра в пограничном	
		слое атмосферы	205
	4.5.	Определение производных эмпирических функций	
		исходных данных методом интегральных уравнений.	
		Разработка регуляризирующего алгоритма	209
	4.6.	Построение вычислительной схемы, результаты	
		вычислительного эксперимента для задачи	
		по определению производных эмпирических функций	213
	4.7.	Расчетно-аналитическая модель поля скорости ветра	
		в пограничном слое атмосферы	221
	4.8.	Постановка вычислительного эксперимента	
		для расчетно-аналитической модели поля скорости ветра,	
		результаты расчетов	229
	4.9.	Качественные модели, основанные на фундаментальном	
		решении уравнения переноса примесей с постоянными	
		коэффициентами	235
	4.10.	Численное исследование пространственно-временных	
		характеристик процесса переноса примесей в атмосфере	
		с учетом метеофакторов	241
	4.11.	Вывод интегральных уравнений для оценки количества	
		аэрозолей в пункте наблюдения, поступающих в него	
		от источников с конечной и непрерывной	
		плительностью пейстрия Вынислительный эксперимент	240

4.12	. Обратная задача источника на основе интегрального уравнения для оценки уровня загрязнения в пункте наблюдения, построение регуляризирующего алгоритма, результаты расчетов и численных исследований
	а и исследование вычислительных моделей поля ветра в атмосфере применительно к задачам
	ского мониторинга26
5.1.	
3.11	нелинейного уравнения Навье – Стокса на основе
	методов расщепления и локальной линеаризации26
5.2.	Построение параметризованной локально-линейной
	модели векторного нелинейного уравнения Навье – Стокса 27-
5.3.	Редукция системы дифференциальных уравнений
	параметризованной линейной модели к системам
	линейных алгебраических уравнений на основе
	многочленов Бернштейна
5.4.	Построение регуляризирующего алгоритма на основе
	вычисления обратных обобщенных матриц систем СЛАУ
	в параметризованной линейной модели уравнения
5.5.	Навье – Стокса
5.5.	методов оптимизации для уравнений параметризованной
	линейной модели Навье – Стокса
5.6.	Математические модели для расчета ротора поля
5.0.	скорости ветра и оценки коэффициента турбулентной
	диффузии применительно к задаче переноса загрязнений
	в пограничном слое атмосферы
5.7.	Алгоритм вычисления частных производных компонент
	векторного поля скорости ветра на основе операторов
	обобщенного дифференцирования и многочленов
	Бернштейна
5.8.	Вычислительная схема для оценки ротора, дивергенции
	поля скорости ветра и коэффициента турбулентной
	диффузии
5.9.	Методика тестирования алгоритмов. Исследование
	точности аппроксимации многочленами Бернштейна
	полей исходных данных и их производных
	в вычислительном эксперименте

Содержание

5.10.	Численное исследование сходимости и устойчивости	
	вычислительных схем	332
5.11.	Численное исследование влияния коэффициента	
	турбулентности, силы и давления на пространственно-	
	временное распределение поля скорости ветра	343
	Вычисление ротора вектора скорости ветра	
	и коэффициента турбулентной диффузии. Численное	
	исследование влияния силового поля и давления	
	на поле ротора и турбулентности	353
Литература		364

ПРЕДИСЛОВИЕ

Вопросам охраны окружающей среды посвящен большой цикл исследований, выполняемый как за рубежом, так и в нашей стране. Практическая значимость этих исследований и соответствующих результатов общеизвестна. Вместе с тем в рамках этого направления остается ряд сложных в математическом отношении задач, связанных с краткосрочными прогнозами распространения загрязняющих веществ в природной среде, обусловленных, в частности, их аварийным сбросом. Оперативное решение подобных прогностических задач требует разработки нестационарных моделей массопереноса в условиях турбулентной атмосферы и создания численных методов и алгоритмов решения соответствующих математических уравнений и их систем в ограниченных пространственно-временных интервалах. Проблема усложняется необходимостью решения обратных задач массопереноса в природной среде и разработке на их основе теории и методов оперативного контроля состояния природной среды, то есть дистанционного определения ее основных параметров, необходимых для решения указанных прогностических задач. Актуальной проблемой также является разработка качественных расчетно-аналитических моделей для решения уравнения диффузного переноса субстанции в атмосфере в пределах пограничного слоя, позволяющих выполнять качественную оценку значений параметров соответствующей математической модели, получать простые аналитические решения и строить соответствующие алгоритмы исходной задачи. Перечисленные выше вопросы определяют основное содержание научного направления, разрабатываемого в том числе в рамках данной монографии. Особенностью проводимых исследований является системный подход к решению проблемы, проявляющейся в единстве разрабатываемых математических моделей с рекомендациями их практического использования в качестве методологической основы соответствующих информационно-измерительных систем экологического мониторинга окружающей среды.

Результаты, изложенные в данной монографии, представляют собой дальнейшее развитие теории и методов экологического мониторинга пограничного слоя атмосферы, опубликованные ранее в

монографии авторов Е. А. Семенчина, И. Э. Нааца, В. И. Наац «Математическое моделирование нестационарного переноса примеси в пограничном слое атмосферы» (М.: Физматлит, 2003), а также в монографии авторов В. И. Наац и И. Э. Нааца «Математические модели и численные методы в задачах экологического мониторинга атмосферы» (М.: Физматлит, 2010), публикация которой осуществлена при поддержке гранта РФФИ (№ проекта 09-01-07026). В соответствии с этим данные результаты являются в полной мере оригинальными с учетом авторской постановки задач математической экологии.

В первой главе выполняется обзор литературных источников по проблеме математического моделирования динамики атмосферных процессов применительно к проблеме экологического мониторинга атмосферы. Рассматриваются вопросы комплексного мониторинга воздушной среды и математического моделирования атмосферных процессов, а также соответствующих численных методов. Дается характеристика и достижения научного направления авторов монографии.

Во второй главе излагается и обосновывается условно называемый в данной работе «метод параметризованных моделей», применяемый в задачах переноса субстанции в пограничном слое атмосферы. Для уравнения нестационарного диффузного переноса примесей в пограничном слое атмосферы в главе выполняется построение вычислительных параметризованных моделей на основе конечно-разностного метода. С использованием этих моделей разрабатывается алгоритм моделирования исходных данных и методика вычислительного эксперимента, приводятся результаты моделирования.

В третьей главе развивается условно называемый в данной работе «метод интегральных уравнений», который позволяет получать интегральные представления для решения краевой задачи переноса субстанции. На основе данного метода строятся рекурсивно-итерационные вычислительные схемы для уравнения переноса, выполняется аналитическое и численное исследование свойств вычислительных алгоритмов. Во второй части главы осуществляется дальнейшее развитие «метода интегральных уравнений», а именно выполняется построение и обоснование качественных расчетно-аналитических моделей, для которых разрабатываются соответствующие рекурсивно-итерационные вычислительные алгоритмы на основе метода по-

следовательных приближений, проводится вычислительный эксперимент по исследованию свойств алгоритмов, приводятся результаты вычислений.

Четвертая глава посвящена постановке и решению обратных задач и разработке качественных моделей в проблеме усвоения данных мониторинга моделями переноса аэрозолей в пограничном слое атмосферы. Выполняется постановка обратной коэффициентной задачи по определению коэффициента турбулентной диффузии из уравнения переноса, обратная коэффициентная задача для уравнений непрерывности поля скорости ветра в пограничном слое атмосферы, обратная задача источника на основе интегрального уравнения для оценки уровня загрязнения в пункте наблюдения. Для данных задач выполняется построение соответствующих регуляризирующих алгоритмов, их программная реализация и вычислительный эксперимент, приводятся результаты моделирования. Кроме этого, в главе разрабатываются качественные расчетно-аналитические модели теории переноса на основе полуэмпирического уравнения турбулентной диффузии, разрабатываются простейшие методики прогноза экологического состояния воздушного бассейна в пределах промышленного региона, применяются к решению прикладных задач. Это такие модели, как: модели переноса на основе априорных оценок значений коэффициента турбулентности, определяемых по дифференциальным характеристикам поля скорости ветра в пограничном слое атмосферы; расчетно-аналитическая модель поля скорости ветра в пограничном слое атмосферы; качественные модели, основанные на фундаментальном решении уравнения переноса примесей с постоянными коэффициентами. Для данных моделей также разрабатывается соответствующее программно-алгоритмическое обеспечение, проводится вычислительный эксперимент.

В пятой главе строятся модели для пространственных задач переноса и аэродинамических процессов в рамках метода расщепления. Выполняется разработка и исследование вычислительных моделей поля скорости ветра в атмосфере применительно к задачам экологического мониторинга, осуществляется построение параметризованной локально-линейной модели векторного нелинейного уравнения Навье — Стокса и соответствующего программно-алгоритмического

Ä

обеспечения. Разрабатываются математические модели для расчета ротора поля скорости ветра и оценки коэффициента турбулентной диффузии применительно к задаче переноса загрязнений в пограничном слое атмосферы, создается соответствующая вычислительная схема для оценки ротора, дивергенции поля скорости ветра и коэффициента турбулентной диффузии. Проводится вычислительный эксперимент, включающий в себя численные исследования и тестирование программно-алгоритмического комплекса, вычисление ротора вектора скорости ветра и коэффициента турбулентной диффузии, численное исследование влияния силового поля и давления на поле ротора и турбулентности, приводятся соответствующие результаты моделирования.