Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Ивановский государственный химико-технологический университет

О.И. Одинцова, М.Н. Кротова, С.В. Смирнова

ОСНОВЫ ТЕКСТИЛЬНОГО МАТЕРИАЛОВЕДЕНИЯ

Текст лекций

Иваново - 2008

УДК 677.03:620.2(075.8)

Одинцова, О.И. Основы текстильного материаловедения: учебное пособие. текст лекций / О.И. Одинцова, М.Н. Кротова, С.В. Смирнова; Иван. гос. хим.-технол. ун-т. – Иваново, 2008.- 63с.

Представлены общие сведения о текстильном материаловедении. Рассмотрена классификация текстильных материалов, дана краткая характеристика их свойств и областей применения. Изложены вопросы получения и первичной обработки натуральных волокон и производства химических волокон. Приведены основные показатели оценки качества текстильных полотен. Для студентов текстильных вузов.

Табл.1, Ил. 17

Печатается по решению редакционно-издательского совета Ивановского государственного химико-технологического университета.

Рецензенты: профессор, к.х.н. Гарцева Л.А.(Ивановская государственная текстильная академия)

© Ивановский государственный химико-технологический университет, 2008

ВВЕДЕНИЕ

Целью изучения материаловедения является формирование у учащихся знаний о получении природных и химических волокон, их свойствах и областях применения. Курс лекций направлен на ознакомление студентов с процессами первичной обработки натуральных волокон, основными показателями оценки качества текстильных материалов.

Эти знания необходимы студентам при выполнении дипломных и курсовых проектов, а так же при работе выпускников ВУЗов в условиях отделочного производства текстильной промышленности.

Отрасли текстильной промышленности и основные направления их развития

Текстильная промышленность является одной из ведущих и важнейших в легкой индустрии и занимает первое место в производстве материальных благ. Результаты деятельности текстильных предприятий представлены тканями, трикотажными изделиями, коврами, кружевами, то есть предметами быта, интерьера и одежды человека.

В зависимости от вида перерабатываемого сырья текстильную промышленность подразделяют на отрасли:

- хлопчатобумажную;
- льняную (лубяную);
- шерстяную;
- шелковую.

Текстильная промышленность включает следующие виды производств:

- 1. Производство по первичной обработке текстильных волокон (сырья):
- хлопкоочистительные заводы для очистки хлопка-сырца и для отделения волокон хлопка от семян и упаковки их в кипы;

- фабрики для мытья шерсти, ее сортировки, удаления примесей, жиропота и упаковки волокна в кипы;
- заводы по первичной обработке лубяных волокон, где производится выделение волокон из стеблей и их очистка, упаковка в кипы;
- заводы по первичной обработке коконов, где осуществляют следующие операции: запаривание коконов, их высушивание и упаковка в ящики.
- 2. <u>Прядильное производство</u> совокупность в основном механических и пневматических технологических процессов, обеспечивающих формирование пряжи из натуральных и химических волокон. В зависимости от вида перерабатываемых волокон имеются хлопко-, шерсто-, льно-, пенько-, джуто- и шелкопрядильное производства.
- 3. <u>Кокономотальное производство</u>, где осуществляется разматывание коконов и соединение при этом нескольких коконных нитей в одну комплексную нить.
- 4. <u>Ткацкое производство</u> совокупность в основном механических технологических процессов, обеспечивающих формирование ткани из однониточной или крученой пряжи, шелковых и химических нитей. Различают хлопко-, шерсто-, льно- и шелкоткацкие производства.
- 5. <u>Красильно-отделочное производство</u> совокупность химических, тепловых и механических технологических процессов, обеспечивающих крашение, печатание и отделку тканей и трикотажа.

<u>Трикотажное производство</u> – совокупность главным образом механических технологических процессов, обеспечивающих формирование трикотажного полотна или трикотажных изделий из пряжи и химических нитей. Это производство по принятой в России организационной системе является самостоятельной отраслью промышленности.

Одним из направлений совершенствования текстильного производства является изменение характера сырьевой базы, а именно повышение доли использования химических волокон. Развитие сырьевой базы предусматривает реализацию селекционных работ по выведению высокоурожайных сортов льна,

хлопчатника и высокопродуктивных пород овец, а также производство модифицированных химических волокон и нитей с заданными свойствами.

Прогресс в прядении предполагает совершенствование безверетенного прядения и создание однопереходной системы, вплоть до схемы волокно – пряжа.

В ткачестве прогресс может быть обеспечен развитием и широким внедрением бесчелночных ткацких станков, мотальных автоматов, скоростных кареток.

В отделочном производстве дальнейшее развитие получат совмещенные способы подготовки, крашения и заключительной отделки текстильных материалов, а также ресурсосберегающие, безотходные, экологически безопасные технологии.

Для того чтобы успешно решать эти задачи необходимо иметь развитое машиностроение, современные производства по выпуску красителей, ТВВ и ПАВ, а также мощную сырьевую базу для их создания.

Все процессы, происходящие на текстильных предприятиях, изучает наука – технология текстильных материалов, которая подразделяется на механическую (МТТМ) и химическую (ХТТМ).

Механическая технология текстильных материалов занимается изучением способов производства различных текстильных материалов — пряжи, ткани, трикотажа и др., рассматривает процессы механической обработки волокон, благодаря которым из бесформенной волокнистой массы получаются пряжа, нити, ткани, трикотаж и нетканые материалы (прядение и ткачество).

Химическая технология текстильных материалов рассматривает процессы отделки — беление, крашение, печатание и заключительную отделку текстильных материалов, то есть процессы, где широко применяются химические реагенты.

Обе науки тесно связаны между собой, так как химическая обработка производится с учетом свойств сырья, ткани, вида ткацкого переплетения ткани, ее плотности и других особенностей.

Текстильное материаловедение — наука о строении, свойствах текстильных материалов и методах оценки их качества.

ТЕКСТИЛЬНЫЕ МАТЕРИАЛЫ

Текстильными называются материалы, состоящие из текстильных волокон. К ним относятся сами волокна, нити, пряжа и изделия из них: войлок, фетр, ткани, трикотаж, галантерейные изделия и т. д.

Текстильными волокнами называются протяженные гибкие прочные тела с малыми поперечными размерами и ограниченной длиной, пригодные для изготовления пряжи и других текстильных изделий.

Текстильные волокна подразделяют на технические и элементарные.

Элементарные волокна — это одиночные волокна, которые невозможно разделить на более мелкие.

Технические (или комплексные) волокна состоят из нескольких элементарных волокон, склеенных друг с другом, например, льняное волокно.

Как элементарные, так и технические волокна имеют ограниченную длину порядка десятков или сотен миллиметров ($1 \cdot 10 \div 1 \cdot 100$ мм).

Элементарное волокно длиной в несколько сотен метров называется элементарной нитью, например натуральный шелк, химическое волокно.

Текстильные нити — это гибкие, прочные тела с малыми поперечными размерами и сколь угодно большой длиной, состоящие из продольно соединенных волокон или элементарных нитей.

По структуре текстильные нити делятся на первичные и вторичные.

Первичные нити получают сразу после прядения из волокон (пряжа) или после формования (химическая нить).

Вторичные нити получают из первичных путем специальной обработки с целью изменения внешнего вида и свойств. Это крученые и текстурированные нити.

Текстильные изделия могут быть получены как из волокон, так и из пря-

жи и нитей. Единого определения *текстильное изделие* нет ввиду их большого разнообразия. Можно лишь перечислить их виды. Прежде всего, это полотна и в первую очередь – ткани.

Ткань - это текстильное изделие, образованное на ткацком станке переплетением двух взаимно перпендикулярных систем параллельно расположенных нитей: основных, идущих вдоль ткани, и уточных, идущих поперёк. Основные нити кратко называются основой, а уточные утком.

Трикотажные полотна получают из одной или более нитей одной системы путем образования петель и их переплетения.

Нетканые полотна получают скреплением различными способами сло- ёв волокон – холстов или параллельно расположенных нитей.

Классификация текстильных волокон

Все текстильные волокна состоят из высокомолекулярных соединений (ВМС). По происхождению они делятся на 2 группы: натуральные и химические.

Натуральные волокна формируются в природе без непосредственного участия человека и состоят в основном из органических природных гетероцепных ВМС. Лишь небольшая группа натуральных волокон состоит из неорганических ВМС.

Химические волокна производят в заводских условиях из природных органических гетероцепных высокомолекулярных соединений и синтетических гетеро- и карбоцепных высокомолекулярных соединений. Химические волокна, получаемые переработкой природных ВМС, называются искусственными. К ним относятся вискозные, медно-аммиачные, ацетатные и триацетатные волокна, лиоцелл. Сырьем для их производства является целлюлоза, полученная из древесины или хлопка. Синтетическими называют волокна, вырабатываемые из синтетических полимеров. В зависимости от строения основной цепи макромолекул синтетические волокна, так же, как исходные полимеры делятся на

две группы: карбоцепные и гетероцепные.

К карбоцепным относятся волокна, вырабатываемые из синтетических органических веществ, основные цепи макромолекул которых построены только из атомов углерода. Наиболее перспективными волокнами этой группы являются полиакрилонитрильные (ПАН) и полиолефиновые (ПО).

К гетероцепным относятся волокна, полученные из синтетических органических полимеров. Гетероцепные полимеры помимо углерода в основной цепи макромолекулы имеют атомы серы, кислорода, азота и других элементов. К этой наиболее многочисленной группе синтетических волокон относятся: полиамидные, полиэфирные и полиуретановые (высокоэластичные волокна).

Сырьем при получении исходных материалов для производства синтетических волокон служат продукты переработки каменного угля и нефти: этилен, ацетилен, бензол, фенол и т. п.

Классификация текстильных волокон по происхождению, способам производства и химическому составу приведена в табл. 1.

Таблица 1

Классификация основных текстильных волокон

Класс		П/класс	Группа	П/группа	Представители
1	2	3	4	5	6
Натуральные		Органические ВМС	Растительного проис- хождения (целлюлоз- ные)	Семенные	Хлопок
				Лубяные	Лен, джут, пенька, конопля
					и др.
			Животного происхож- дения (белковые)	Шерстяные	Шерсть
				Шелковые	Натуральный шелк
		Неорганические ВМС	Минерального проис- хождения	Асбест	
	Органические	Искусственные	Целлюлозные	Гидратцеллюлозные	Вискозные, высокомодуль-
					ные
					Медно-аммиачные
				Лиоцеловые	
ие				Ацетатные	Ди- и триацетатные
Химические				Карбаматные	
				Полилактидные	
			Белковые	Из животных белков	Казеиновые
				Из растительных белков	Зеиновые
		Синтетические	Гетероцепные	Полиамидные	Поликапроамидные
					(капрон, найлон-6)
					Полигексаметиленадипа-
					мидные (анид, найлон 6.6)

• •

				Полиаминоэнантовые (энант, найлон 7)
				Полиаминоундекановые (ундекан, найлон 7)
				Полиаминопеларгоновые
			Полиэфирные	Полиэтилентерефталатные (лавсан, дакрон)
			Полиуретановые	Уретановые
				Высокоэластичные (лайкра, вирен)
			Полиакрилонитрильные (нитрон, орлон, кашмилон)	
			Поливинилспиртовые (винол, куралон, винилон)	
		Карбоцепные	Полиолефиновые	Полиэтиленовые
				Полипропиленовые
			Поливинилхлоридные (хлорин, ровиль, саран)	
			Фторсодержащие	Тефлон, фторлон
			Углеродные	Жаростойкие
Пче-			Стеклянные	Стекловолокно
Неорганиче			Металлические	Метанит
ОЭН			Керамические	Керамические нити

, **Ä**

• •