Ä

А.А. Левицкий П.С. Маринушкин

ПРОЕКТИРОВАНИЕ МИКРОСИСТЕМ

Программные средства обеспечения САПР

Учебное пособие

УМО

<u>ИНСТИТУТ ИНЖЕНЕРНОЙ ФИЗИКИ И РАДИОЗЛЕКТРОНИКИ</u>

Элентроника и микроэлентроника, Проентирование и технология элентронных средств, Элентроника и наноэлентроника, Конструирование и технология элентронных средств

Ä

Ä

Министерство образования и науки Российской Федерации Сибирский федеральный университет

А. А. Левицкий П. С. Маринушкин

ПРОЕКТИРОВАНИЕ МИКРОСИСТЕМ

Программные средства обеспечения САПР

Рекомендовано Учебно-методическим объединением по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации в качестве учебного пособия для студентов вузов по направлению 210200, 31 мая 2010 г.

Красноярск СФУ 2010

УДК 004.42(07) ББК 32.973.2-018я73 Л37

Рецензенты:

- Г. Н. Чурилов, д-р техн. наук, проф. зав. лабораторией АМИВ Института физики СО РАН;
- Е. Н. Сухарев, канд. техн. наук, доц. кафедры «Электронная техника и телекоммуникации» Сибирского государственного аэрокосмического университета

Левицкий, А. А.

Проектирование микросистем. Программные средства обеспечения САПР: учеб. пособие / А. А. Левицкий, П. С. Маринушкин. — Красноярск: Сиб. федер. ун-т, 2010. — 156 с. ISBN 978-5-7638-2111-6

В пособии рассматриваются вопросы применения программных средств, используемых при проектировании устройств микросистемной техники. Приводятся сведения о специализированных системах проектирования, об универсальных САЕ- и других пакетах программ, обеспечивающих решение задач моделирования и разработки элементов микросистемной техники.

Рекомендовано студентам направлений подготовки бакалавров и магистров 210100 «Электроника и микроэлектроника» и 210200 «Проектирование и технология электронных средств» (ГОС ВПО 2); 210100 «Электроника и наноэлектроника» и 211000 «Конструирование и технология электронных средств» (ФГОС ВПО).

УДК 004.42(07) ББК 32.973.2-018я73

© Сибирский федеральный университет, 2010

ISBN 978-5-7638-2111-6

ВВЕДЕНИЕ

Микросистемная техника (МСТ) является одним из наиболее активно развивающихся в последнее время научных направлений. Актуальность работ в данном направлении связана с тем, что МСТ обладает значительным прикладным потенциалом, что подтверждается большим объемом публикаций как в России, так и в ведущих странах мира. С развитием МСТ (в ряде зарубежных стран чаще используется аббревиатура МЭМС – «микроэлектромеханические системы» [6]) наблюдается тенденция к переходу от проектирования микроструктуры к проектированию микросистемы. По мере совершенствования технологических процессов и повышения производительности вычислительных средств разработчики все больше ориентируются на решение задач оптимизации устройств МСТ с точки зрения системы. Современные инструменты автоматизированного проектирования обладают функциональными возможностями, обеспечивающими решение таких задач.

Несмотря на то, что в развитых в техническом отношении странах мира издается большое количество учебной литературы по вопросам проектирования устройств МСТ, в нашей стране ощущается ее недостаток. Практически отсутствует литература, содержащая сведения общего характера о современных тенденциях развития соответствующих программных средств, в особенности применительно к подготовке специалистов в области решения задач анализа и синтеза микросистем как на схемотехническом и системном уровне, так и моделирования на физическом уровне. Предлагаемое учебное пособие призвано восполнить этот пробел.

Очевидно, что ограниченное по объему учебное издание, такое как данное пособие, не может и не должно вмещать в себя подробную информацию о множестве имеющихся программных средств, предназначенных для решения данных задач, связанных с разработкой микросистем. Поэтому в данном случае акцент был сделан на общих принципах и сравнительной характеристике программных средств. Более детально рассмотрены только достаточно известные пакеты – MEMS Tec, CoventorWare, IntelliSuite.

В пособии не рассматриваются программные средства, предназначенные для физического и технологического моделирования полупроводниковых микроэлектронных устройств, такие как Synopsys Sentaurus TCAD (ISE TCAD), Tsuprem, MicroTec, Silvaco TCAD.

Вместе с тем в пособии приводятся сведения не только о специализированных системах проектирования, но и о применении универсальных САЕ- и других пакетов, позволяющих решать задачи моделирования и разработки элементов микросистемной техники.

Авторы выражают благодарность А. А. Липуновой за помощь в подготовке части материалов пособия к изданию.

Ä

ОГЛАВЛЕНИЕ

введение
1. ОПИСАНИЕ МОДЕЛЕЙ ЭЛЕМЕНТОВ МИКРОСИСТЕМНОЙ ТЕХНИКИ
1.1. Элементы микросистемной техники как объекты моделирования
1.2. Численное моделирование
1.3. Моделирование с помощью схем замещения
1.4. Поведенческие модели элементов микросистемной техники
Заключение
Контрольные вопросы и задания
2. УНИВЕРСАЛЬНЫЕ САЕ-СИСТЕМЫ
2.1. ANSYS
2.2. COMSOL Multiphysics.
2.3. ALGOR.
2.4. COSMOSWorks
2.5. MATLAB \ SUGAR
2.6. Сравнительная характеристика САЕ-пакетов.
Заключение
Контрольные вопросы и задания.
3. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ MEMS Pro
3.1. Общие сведения
3.2. Разработка электрической схемы устройства
3.3. Разработка топологического чертежа
3.4. Разработка технологического процесса
3.5. Создание трехмерной твердотельной модели
Заключение
Контрольные вопросы и задания
4. ПАКЕТ CoventorWare
4.1. Общие сведения
4.2. Главное диалоговое окно Function Manager
· · · · · · · · · · · · · · · · · · ·
4.3. Разработка технологического процесса.
4.4. Проектирование устройства на системном уровне
4.5. Разработка трехмерной модели устройства
4.6. Выполнение анализа в модуле Analyzer
4.7. Сравнительная характеристика MEMS Pro и CoventorWare
Заключение
Контрольные вопросы и задания
5. ΠΑΚΕΤ IntelliSuite
5.1. Концепция проектирования в пакете IntelliSuite
5.2. Основные компоненты пакета IntelliSuite
5.3. Разработка схемы. Модуль Synple
5.4. Разработка топологии. Модуль Blueprint
5.5. Разработка технологического процесса
5.6. Физическое моделирование
5.7. Экстракция и верификация моделей
5.8. Связь IntelliSuite с EDA инструментами
**
Заключение
Контрольные вопросы и задания
ЗАКЛЮЧЕНИЕ
СПИСОК ОСНОВНЫХ ТЕРМИНОВ И СОКРАЩЕНИЙ