
• •

1

Л.Н. Журавлева

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДРЕВЕСНЫХ ПЛИТ И ПЛАСТИКОВ

Красноярск 2013

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «Сибирский государственный технологический университет»

Лесосибирский филиал

Л.Н. Журавлева

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДРЕВЕСНЫХ ПЛИТ И ПЛАСТИКОВ

Утверждено редакционно-издательским советом Сиб ГТУ в качестве лабораторного практикума для студентов направления 250400 «Технология лесозаготовительных и деревоперерабатывающих производств» профиля подготовки «Технология деревообработки» очной, заочной форм обучения

Красноярск 2013

• • •

Журавлева, Л.Н. Технология и оборудование древесных плит и пластиков: лабораторный практикум для студентов направления 250400 «Технология лесозаготовительных и деревоперерабатывающих производств» профиль «Технология деревообработки» очной, заочной форм обучения / Л.Н. Журавлева. – Красноярск: СибГТУ, 2013. – 48 с.

Рецензенты: В.В. Гудз (ОАО «Маклаковский ЛДК»); доцент Н.А. Романова (научно-методический совет СибГТУ).

Лабораторный практикум разработан в соответствии с федеральным государственным образовательным стандартом высшего профессионального обучения по направлению 250400 «Технология лесозаготовительных и деревоперерабатывающих производств» профиля «Технология деревообработки» очной, заочной форм обучения и является частью учебно-методического комплекса дисциплины «Технология и оборудование древесных плит и пластиков».

©Л.Н. Журавлева

© ФГБОУ ВПО «Сибирский государственный технологический университет», Лесосибирский филиал, 2013

Содержание

Введение	
Требования к выполнению и оформлению работ	
Техника безопасности при выполнении работ	
Лабораторная работа №1. Определения физико-механических	
показателей плитных материалов	
1.1. Определение влажности древесных плит	
1.2. Определение плотности древесных плит	
1.3. Определение разбухания по толщине древесных плит	
1.4. Определение водопоглощения древесных плит	
1.5. Определение покоробленности древесностружечных плит	
1.6. Определение модуля упругости и предела прочности при изгис	бе
древесных плит	•••
1.7. Определение предела прочности при растяжении	
перпендикулярно к пласти древесностружечных плит	
1.8. Определение шероховатости поверхности древесностружечных	-
плит	
1.9. Определение удельного сопротивления выдергиванию шурупов	
Лабораторная работа №2. Оценка качества технологической щепы	
2.1. Определение массовой доли коры и гнили в щепе	•
2.2. Определение массовой доли остатков на ситах анализатора	
(фракционного состава щепы)	
2.3. Определение массовой доли щепы с мятыми кромками	
2.4. Определение массовой доли хвойных и лиственных пород	
древесины	
Лабораторная работа №3. Получение древесноволокнистой массы	
3.1. Первая ступень размола щепы в древесноволокнистую массу	
3.2. Вторая ступень размола древесной массы	
Лабораторная работа №4 Подготовка проклеивающих составов	
4.1. Приготовление гидрофобных эмульсий	
4.2. Приготовление упрочняющих составов	
4.3. Приготовление осадителя	
Лабораторная работа №5 Проклейка массы и формирование	
древесноволокнистого ковра	
Лабораторная работа № 6 Прессование древесноволокнистых плит.	
Библиографический список	
Приложение А (справочное) Физико-механические показатели	
древесностружечных плит	•
Приложение Б (справочное) Требования к качеству технологической	
щепы	
Приложение В (справочное) Физико-механические показатели	
древесноволокнистых плит	
Приложение Г (справочное) Перечень ключевых слов	_

ВВЕДЕНИЕ

Современное плитное производство является сложным и энергоемким. Оно связано с потреблением большого количества древесины, синтетических смол, воды и других природных и синтетических материалов. В связи с этим в отрасли большое внимание уделяется более рациональному использованию древесного сырья, в частности, увеличению объема потребления технологической щепы в производстве плит, сокращению расхода синтетических смол, а также повышению качества плитных материалов.

Целью лабораторных работ является: ознакомление студентов со способами производства древесноволокнистых плит; закрепление теоретических знаний по отдельным операциям производственного процесса и важнейшим параметрам технологического режима; приобретение навыков в методах анализа и контроля технологических параметров при изготовлении плит и определении физико-математических показателей готовых плит.

Общекультурные компетенции (ОК) обучающегося, формируемые в результате освоения дисциплины:

- владением культурой мышления, способностью к общению, анализу, восприятию информации, постановке цели и выбору путей ее достижения (ОК-1).

Профессиональные компетенции (ПК) обучающегося, формируемые в результате освоения дисциплины:

- способностью использовать технические средства для измерения основных параметров технологического процесса, свойств сырья и изделий из древесины и древесных материалов (ПК-1);
- способностью использовать нормативные документы по качеству, стандартизации и сертификации изделий из древесины и древесных материалов, элементы экономического анализа в практической деятельности (ПК-3);
- готовностью обосновывать принятие конкретного технического решения при разработке технологических процессов и изделий; выбирать технические средства и технологии с учетом экологических последствий их применения (ПК-4);

способностью применять современные методы исследования структуры древесины и древесных материалов; проводить стандартные и сертификационные испытания изделий и технологических процессов с использованием ЭВМ (ПК-11);

готовностью изучать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования (ПК-12);

- способностью разрабатывать проекты изделий с учетом физикомеханических, технологических, эстетических, экономических параметров (ПК-14).

Лабораторный практикум может быть использован при изучении дисциплины «Технология и оборудование древесных плит и пластиков» студентами (очной/заочной форм обучения) направления 250400 «Технология лесозаготовительных и деревоперерабатывающих производств» профиль «Технология деревообработки» в пятом/седьмом семестре. Выполнение и защита лабораторных работ является обязательным условием допуска студента к сессии.

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ И ОФОМЛЕНИЮ РАБОТ

Прежде чем приступить к выполнению той или иной работы, студент должен усвоить основные цели и порядок проведения исследований, ознакомиться с устройством установок, приспособлений и приборов, используемых при проведении работы, а также с правилами по технике безопасности.

После проведения работы студент составляет отчет, в котором четко формулирует цель исследований, приводит перечень установок, устройств, приборов и материалов, используемых при проведении работы, кратко описывает последовательность проведения исследований, приводит рисунок или схему установки, а также необходимые графики и диаграммы изменения исследуемых параметров.

Студент предоставляет преподавателю отчет для проверки. Преподаватель оценивает качество оформления работы, правильность выполненной работы и полученных выводов. Отчет, не соответствующий установленным требованиям, возвращается студенту для доработки. В конце семестра студент предоставляет сводный отчет по лабораторному практикуму.

Отчет по лабораторной работе составляется по следующей форме:

- номер лабораторной работы;
- -название работы;
- цель работы;
- приборы, материалы, реактивы, оборудование и приспособления, используемые в работе;
- краткое описание последовательности проведения исследований, рисунок, схема прибора и установки;
- результаты работы и значения показателей, установленные соответствующими стандартами и техническими условиями;
- выводы (соответствие испытуемого материала требованиям стандартов и технических условий, возможные пути улучшения свойств

исследуемых материалов).

Оформление отчетов по лабораторным работам производится в соответствии с действующим стандартом по оформлению текстовой части документов СТП 3.4.204-01.

ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ РАБОТ

Перед очередным циклом работ преподаватель проводит инструктаж по технике безопасности при работе со смолами, клеями, кислотами, с электрическими и электронагревательными приборами, а также специальным оборудованием, расположенном в учебной лаборатории.

В лабораториях «Лесоперерабатывающая, целлюлозно-бумажная и химическая технология древесины» и «Гидротермическая обработка и консервирование древесины» оборудованы уголки по охране труда, где имеются инструкции по работе со специальным оборудованием. Прежде чем приступить к выполнению тех или иных работ, необходимо ознакомиться с соответствующими инструкциями.

При работе в лабораториях студенты должны соблюдать следующие основные правила:

- перед началом работы на любом оборудовании или приборе необходимо получить разрешение на его включение у преподавателя;
- не допускается включение и отключение приборов, не относящихся к выполняемой работе;
 - не допускается пользование неисправным оборудованием;
- во время работы круглопильного станка, гидравлического пресса, испытуемой машины студенты должны находиться на безопасном расстоянии от движущихся частей оборудования.

Лабораторная работа №1 ОПРЕДЕЛЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ ПОКАЗАТЕЛЕЙ ПЛИТНЫХ МАТЕРИАЛОВ

Цель работы: овладеть методами определения основных показателей физико-механических свойств плитных материалов.

Задачи работы: ознакомиться с методиками определения физикомеханических показателей фанеры; определить показатели физикомеханических свойств фанеры и сравнить их со стандартными значениями.

Приборы и обеспечивающие средства: испытательная машина, микрометр или штангенциркуль с точностью измерения до $0,1\,$ мм, приспособления для проведения испытаний, ванна с водой, весы технические с точностью взвешивания до $0,1\,$ г, сушильный шкаф, эксикатор.

Комплекс работ по физико-механическим методам контроля качества древесных плит представляет собой набор контролируемых параметров, составляющих основу ценообразования (плотность, прочность, шероховатость), управления ассортиментом и в конечной итоге стандартизации (как самих плит, так и методов испытаний).

Возможность довольно широкого регулирования свойств плит в технологическом процессе их производства выдвигает на первый план задачу создания плит с заданными свойствами в соответствии с техническими характеристиками, определяемыми всё тем же набором физикомеханических параметров, методология определения которых излагается ниже. При этом следует помнить, что диапазон изменения свойств древесных плит достаточно широк. Опыт применения древесных плит в различных отраслях народного хозяйства позволяет сформулировать комплекс показателей качества, определяющий использование плит в тех или иных элементах конструкций.

Так, для мебельных конструкций, эксплуатируемых в условиях стабильной влажности и температуры, основными будут показатели механических свойств — прочность, жесткость, твердость и т. д., а также геометрические показатели — шероховатость поверхности, разнотолщинность, покоробленность и др.

При применении древесных плит в строительстве (полы, перегородки, элементы кровли), кроме механических показателей, перечисленных выше, необходимо знать физические свойства — плотность, влажность, водопоглощение, теплопроводность и т. д.

В технологии отделки и облицовки плит важно знать такие характеристики, как упрессовка, шероховатость поверхности. При конструировании изделий из плит важна способность удерживать гвозди и шурупы. Таким образом, конкретный набор показателей качества древесных плит должен определяться путем инженерного анализа условий последующего применения плиты, который нельзя выполнить без элементарных сведений о свойствах плит.

1.1. Определение влажности древесных плит

ГОСТ 10632–2007 «Плиты древесностружечные. Технические условия» предусматривает влажность готовой древесностружечной плиты в пределах 5...12 %. ГОСТ 4598–86 «Плиты древесноволокнистые. Технические требования» предусматривает влажность готовых мягких древесноволокнистых плит не более 12%, а твердых плит в пределах 3... 10 %. Влажность древесной плиты выражают отношением массы влаги, содержащейся в данном объеме плиты, к массе сухой плиты, %:

$$W = \frac{M - M_0}{M_0} 100, \qquad (1.1)$$

где W – влажность плиты;

 M_1 – масса плиты, кг;

 M_0 – масса сухой плиты, кг.

Для определения показателя влажности ГОСТ 10634 – 88 и ГОСТ 19592–80 предусматривают использование «весового» метода, основанного на выделении влаги высушиванием образцов плиты. По разности масс влажного и абсолютно сухого образца определяется масса содержащейся влаги и по формуле (1.1) вычисляется влажность. Этот метод прост в исполнении и точен, но отличается длительностью проведения испытаний (более 20 ч).

Влажность определяется на образцах древесностружечных плит размером 50х50 мм и древесноволокнистых плит размером 100х300 мм.

Количество образцов древесноволокнистых плит 3; древесностружечных плит 6 (3 – для определения плотности стандартным методом; 3- для определения влажности экспресс—методом).

Определение влажности стандартным методом (методика ГОСТ 10634–88 и ГОСТ 19592–80)

Определяют массу образцов M_1 с точностью до 0,01 г на аналитических весах. Взвешенные образцы помещают в сушильный шкаф, нагретый до температуры 101... 105 °C, и высушивают при этой температуре до абсолютно сухого состояния. Абсолютно сухим состоянием образца будем считать такое, при котором разница между двумя последовательными взвешиваниями образца, проводимыми через 6 часов, не превышает 0,1 % собственной массы образца. Например, для образца первоначальной массой M_1 =20 г разница между двумя взвешиваниями не должна превышать 0,02 г. Все взвешивания высушиваемого образца должны проводиться после его охлаждения в эксикаторе с гигроскопическим веществом. После определения массы абсолютно сухого образца вычисляют влажность по формуле (1.1). Первое взвешивание высушиваемого образца рекомендуется проводить через 20–24 часа после начала сушки.

Определение влажности экспресс-методом

Образцы древесностружечной плиты измельчают в ступке. Получившуюся древесную массу помещают в пронумерованные плоские фарфоровые бюксы и взвешивают с точностью до 0,01 г на аналитических весах. Бюксы помещают в сушильный шкаф и высушивают измельченные образцы

при температуре 103..105 [°]C до постоянной массы, при которой разность между двумя последовательными взвешиваниями, проводимыми через 0,5 часа, не превышает 0,05 % первоначальной массы измельченного образца. Все взвешивания проводят после охлаждения бюкс с древесной массой в эксикаторе с гигроскопическим веществом.

Первое взвешивание высушиваемого образца рекомендуется проводить через 2 часа. После определения массы абсолютно сухого образца вычисляют влажность по формуле (1.1).

1.2. Определение плотности древесных плит

Плотность является важным физическим показателем древесностружечных и древесноволокнистых плит.

ГОСТ 10632–2007 и ГОСТ 4598–89 устанавливают следующие требования к плотности. Древесностружечные плиты независимо от марки могут иметь плотность $-550...820~{\rm kr/m}^3$, плотность древесноволокнистых плит приведена в таблице 1.1.

Таблица 1.1 - Плотность древесноволокнистых плит, $\kappa \Gamma / M^3$

CT, CT-C	Т, Т–П, Т–С. Т–СП		M-1	M-2	M-3
C1, C1–C	Группа А	Группа В	IVI—1	IVI—Z	IVI—3
8501100	850110	800950	300400	200300	100200

Плотность наружных и внутренних слоев плиты различна.

Плотность материала характеризуется отношением массы тела к его объему. Из определения плотности вытекает методика её определения.

Определение плотности древесных плит стандартными методами

Плотность плиты определяют на 8 образцах. Размер образцов 100x100xh мм, где h— толщина плиты.

Образцы измеряют следующим образом.

Толщину образца измеряют микрометром в четырех точках в соответствии с рисунком 1.1 с точностью до 0,01 мм. За толщину образца принимают среднее арифметическое значение результатов 4 замеров. Длину и ширину образца измеряют штангенциркулем с точностью до 0,01 двух местах параллельно кромкам образца.

За длину и ширину образца принимают среднее арифметическое значение результатов замеров двух параллельных сторон образца.

Результаты измерения заносят в протокол испытаний.

После измерения образцы взвешивают на технических весах с точно-

стью до 0,01 г.

Результаты взвешивания заносят в протокол испытаний.

Плотность определяют по формуле, кг/м³.

$$p = \frac{M}{l \cdot b \cdot h},\tag{1.2}$$

где 1 – длина образца, м;

b – ширина образца;

h – толщина образца;

М – масса образца.

Определение послойной плотности древесностружечных плит

Послойная плотность древесностружечных плит определяется на образцах размером 150х20хh, отобранных для определения послойной влажности. Образцы измеряют и определяют их массу как описано в п. 1.2.1. Плотность каждого слоя вычисляют по формуле (1.2). Результаты заносят в протокол испытаний.

1.3. Определение разбухания по толщине древесных плит

Показатель разбухания по толщине древесных плит есть выраженное в процентах отношение разности толщины плиты после и до увлажнения к толщине плиты до увлажнения:

$$\Delta h = \frac{h - h_0}{h_0} \cdot 100,\tag{1.3}$$

где – $h_0 \, u \, h$ – толщины образцов до увлажнения и после увлажнения, м.

Показатель разбухания древесностружечных плит нормируется ГОСТ 10632–2007 (таблица 1.2).

Таблица 1.2 -Показатель разбухания древесностружечных плит

Марка плиты	П-А	П-Б
Разбухание по толщине за 2 ч, %	12	15

Показатель разбухания древесноволокнистых плит (таблица 1.3) нормируется ГОСТ 4598–86 только для твердых и сверхтвердых плит.

Таблица 1.3 - Показатель разбухания древесноволокнистых плит

Марка плиты	CT, CT–C	Т, Т–П, Т–С, Т–СП	
1		Гр. А	Гр. В
Разбухание по толщине Тв, %	13	20	23

• •

Для определения разбухания отбирают 8 образцов размером 25x25 мм. Образцы устанавливают вертикально в решетку и погружают в ванну с водой так, чтобы верхний край образцов находился на (20+2) мм ниже уровня поверхности воды. Образцы древесностружечных плит выдерживают в воде при температуре (20±1) 0 C согласно ГОСТ 10634–2007 в течение 2 часов.

Образцы древесноволокнистых плит выдерживают в воде при той же температуре согласно ГОСТ 19592–80 в течение 24 часов. Однако исследования показали, что образцы значительно изменяют свои линейные размеры и интенсивно поглощают воду лишь в первые 2–4 часа выдержки в воде, поэтому в учебных целях достаточно выдерживать образцы в ванне в течение 2 часов. Образцы извлекают из ванны, промокают фильтровальной бумагой, измеряют толщину каждого образца микрометром в четырех $(h_1,h_2,\ h_3,\ h_4)$ точках согласно рисунку 1.1 с точностью до 0,01 мм. Результаты замеров вносят в протокол испытания.

Определяют среднюю толщину:

$$h\frac{h_1 + h_2 + h_3 + h_4}{4}. (1.4)$$

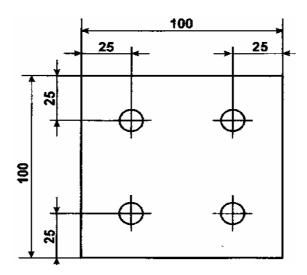


Рисунок 1.1 - Измерение толщины образца

1.4. Определение водопоглощения древесных плит

Для определения водопоглощения используется весовой метод. Находят выраженное в процентах отношение массы набранной влаги к первоначальной массе образца:

•