УДК 621.31.03:622.012 ББК 31.19:31.280.7 О 13

Рецензенты:

Афоничев Дмитрий Николаевич, доктор технических наук, профессор, заведующий кафедрой электротехники и автоматики ФГБОУ ВО Воронежский ГАУ им. императора Петра I

Саенко Юрий Васильевич, доктор технических наук, профессор, кафедры машин и оборудования в агробизнесе ФГБОУ Белгородский ГАУ им. В.Я. Горина

О13 Обеспечение электромагнитной совместимости в системах электроснабжения промышленных предприятий с мощной нелинейной нагрузкой: монография. / Д.А. Прасол, С.В. Соловьёв, А.О. Яковлев, С.В. Килин. — Москва; Белгород: ООО «Издательско-книготорговый центр «Колос-с», 2020. — 220 с.

ISBN 978-5-00129-172-5

В монографии приведен анализ воздействия мощных электроприводов подъемных установок, выполненных по системе тиристорный преобразователь — двигатель постоянного тока независимого возбуждения, на высоковольтную рудничную сеть. С целью обеспечения электромагнитной совместимости в высоковольтных рудничных сетях решена многокритериальная задача оптимизации с использованием аппарата нечетких множеств. В качестве оптимального варианта предложена установка ФКУ с двумя резонансными ПФ и широкополосным ПФ второго порядка в высоковольтной рудничной сети. Представлена имитационная модель высоковольтной системы электроснабжения рудодобывающего предприятия с моделями электроприводов скиповой и клетевой подъемных установок в системе Matlab Simulink, позволяющая проводить исследования электромагнитной обстановки с учетом динамических режимов работы.

Издание рекомендовано для научных сотрудников и инженеров, ведущих прикладные расчеты, а также аспирантов и студентов старших курсов соответствующих направлений подготовки и специальностей.

УДК 621.31.03:622.012 ББК 31.19:31.280.7

ISBN 978-5-00129-172-5

© Коллектив авторов, 2020 © ООО «ИКЦ «Колос-с», 2020

Содержание

. Ä

Введение
1. Анализ электромагнитной обстановки в высоковольтных рудничных сетях
мощными тиристорными электроприводами
1.1. Краткая характеристика высоковольтной системы электроснабжени
рудничных электроприёмников на примере Яковлевского рудника
1.2. Особенности применения электроприводов по системе ТП-Д подъемны
установок на примере Яковлевского рудника1
1.3. Влияние мощных тиристорных электроприводов на показател
электромагнитной совместимости рудничных высоковольтных сетей1
1.4. Методы и технические средства, способствующие компенсации высши
гармонических составляющих токов и напряжений
2. Оценка электромагнитной обстановки в высоковольтной рудничной сети н
примере Яковлевского рудника3
2.1. Экспериментальная оценка электромагнитной обстановки
высоковольтных рудничных сетях
2.2. Имитационное моделирование высоковольтной рудничной системи
электроснабжения подъемных установок4
2.3. Аналитическая оценка показателей электромагнитной совместимости
высоковольтной рудничной сети6
3. Обоснование технических средств для компенсации высших гармоник токов
напряжений в высоковольтных рудничных системах электроснабжения7
3.1. Идентификация параметров и определение вероятностных характеристи
случайных процессов изменения графиков нагрузок рудничны
электроприемников7
3.2. Оценка фактического вклада случайного процесса изменения нагрузки
высоковольтной рудничной сети в токи искажения и токи высших гармоник 8

Ä

. Ä

3.3. Оценка потерь мощности в высоковольтной рудничной сети при
несинусоидальных режимах89
3.4. Обоснование и расчет параметров фильтров для компенсации высших
гармоник токов и напряжений в высоковольтной рудничной сети99
3.5. Оценка частотных характеристик высоковольтной рудничной сети 112
4. Оценка эффективности компенсации высших гармоник и снижения потерь
мощности в высоковольтной рудничной сети
4.1. Анализ причин возникновения несинусоидальности напряжения и анализ
технических средств для её снижения
4.2. Обоснование конструкции устройства для снижения несинусоидальности
напряжения
4.3. Выбор фильтрокомпенсирующих устройств на основании решения
многокритериальной задачи оптимизации с использованием аппарата нечетких
множеств
4.4. Построение имитационных моделей высоковольтных рудничных систем
электроснабжения с учетом мощных нелинейных электроприемников и
установкой ФКУ155
4.5. Результаты имитационного моделирования в рудничных высоковольтных
системах электроснабжения с установленными ФКУ
4.6. Оценка экономической эффективности установки выбранных
фильтрокомпенсирующих устройств164
Список сокращений и условных обозначений172
Приложения
Список напол завани в натаничков

. Ä