УДК 537.8(078) ББК 22.313я7 М29

Издание доступно в электронном виде на портале *ebooks.bmstu.ru* по адресу: http://ebooks.bmstu.ru/catalog/70/book1851.html

Рецензенты:

д-р физ.-мат. наук, проф. кафедры физики Московского авиационного института (национального исследовательского университета) Г.Н. Измайлов; зав. кафедрой физики Московского государственного университета геодезии и картографии, д-р техн. наук, проф. В.И. Троицкий

Мартинсон Л. К.

М29 Электромагнитное поле: учебное пособие / Л. К. Мартинсон, А. Н. Морозов, Е. В. Смирнов. — 2-е изд., испр. — Москва: Издательство МГТУ им. Н.Э. Баумана, 2018. — 422, [2] с.: ил. — (Физика в техническом университете).

ISBN 978-5-7038-4950-7

Рассмотрено электромагнитное поле, посредством которого в классической физике осуществляется электромагнитное взаимодействие электрических зарядов — фундаментальное физическое взаимодействие, проявляющееся не только в электромагнитных явлениях, но и в ряде других явлений и процессов. В основе теории лежат уравнения Максвелла, которые дают математически строгое и полное описание всех известных в природе явлений электромагнетизма. Приведено решение большого числа задач, иллюстрирующих теоретический материал, а также развивающих и дополняющих его. Описаны новейшие технические достижения в области электромагнетизма.

Материал, приведенный в учебном пособии, соответствует курсу лекций, читаемых авторами в МГТУ им. Н.Э. Баумана в рамках курса общей физики.

Для студентов технических университетов и вузов.

УДК 537.8(078) ББК 22.313я7

- © Мартинсон Л.К., Морозов А.Н., Смирнов Е.В., 2013
- © Мартинсон Л.К., Морозов А.Н., Смирнов Е.В., 2018, с изменениями
- © Оформление. Издательство МГТУ им. Н.Э. Баумана, 2018

ISBN 978-5-7038-4950-7

Ä

Оглавление

Предисловие к первому изданию	. 7
Введение	. 8
1. Электростатическое поле в вакууме	. 10
1.1. Электрические заряды	. 11
1.2. Закон Кулона. Электрическое поле	. 16
1.3. Напряженность электростатического поля. Силовые линии	21
1.4. Принцип суперпозиции для электростатических полей	
1.5. Теорема Гаусса для электростатического поля	
1.6. Расчет электрических полей с помощью теоремы Гаусса	
1.7. Потенциал электростатического поля	
1.8. Уравнение Пуассона для потенциала электростатического	
поля	. 58
2. Электростатическое поле в диэлектрике	
2.1. Полярные и неполярные молекулы. Диполь в электрическом	
поле	66
2.2. Поляризация диэлектриков	
2.3. Теорема Гаусса для поля в диэлектрике	80
2.4. Условия на границе раздела диэлектриков	
3. Электрическое поле заряженных проводников	
3.1. Электростатика проводников	
3.2. Электрическая емкость проводников и конденсаторов	
3.3. Энергия заряженного проводника и конденсатора	
3.4. Энергия электрического поля	110
4. Электрический ток	116
4.1. Сила и плотность тока.	117
4.2. Уравнение непрерывности	122
4.3. Электрическое поле проводника с током	125
4.4. Сторонние силы	126
4.5. Закон Ома	129
4.6. Правила Кирхгофа	141
4.7. Закон Джоуля — Ленца	147
4.8. Зависимость сопротивления проводников от температуры.	117
Сверхпроводимость	154
4.9. Источники тока	162
5. Магнитное поле в вакууме	
5.1. Магнитное поле и его характеристики	168
5.2. Закон Био — Савара — Лапласа	172
5.3. Расчет магнитных полей проводников с токами	176
5.4. Теорема Гаусса для магнитного поля	184
5.5. Теорема г аусса для магнитного поля	
5.6. Понятие о векторном потенциале	
6. Движение заряженных частиц в электрическом	170
	100
и магнитном полях	177
6.1. Сила Лоренца.	200
6.2. Движение частицы в постоянном электрическом поле	203

Ä

6.3. Движение частицы в однородном магнитном поле	206
6.4. Движение заряженных частиц в скрещенных электрическом	
и магнитном полях	211
6.5. Движение заряженных частиц в неоднородных электриче-	
ском и магнитном полях	216
6.6. Ускорители заряженных частиц	
6.7. Эффект Холла	236
6.8. Ионные и плазменные двигатели	240
7. Проводники с током в магнитном поле	250
7.1. Действие магнитного поля на проводник с током	
7.2. Контур с током в магнитном поле	257
7.3. Работа по перемещению проводника с током в магнитном	
поле	266
8. Магнитное поле в веществе	273
8.1. Вектор намагниченности	
8.2. Вектор напряженности магнитного поля	281
8.3. Условия на границе раздела двух магнетиков	287
8.4. Магнитное поле в однородном магнетике	292
8.5. Диамагнетизм	295
8.6. Парамагнетизм	305
8.7. Ферромагнетизм	312
9. Электромагнитная индукция	
9.1. Закон электромагнитной индукции	
9.2. Природа электромагнитной индукции	. 339
9.3. Самоиндукция	346
9.4. Взаимная индукция	354
9.5. Энергия магнитного поля	359
9.6. Силы, действующие в магнитном поле. Магнитное	
давление	366
9.7. Квазистационарный переменный ток	374
9.8. Применение электромагнитной индукции	
10. Уравнения Максвелла для электромагнитного поля	
10.1. Вихревое электрическое поле	
10.2. Ток смещения	
10.3. Закон полного тока	400
10.4. Основные положения электромагнитной теории	
Максвелла	402
10.5. Преобразования Лоренца для электрического и магнитно-	
го полей	
Заключение	
Литература	
Именной указатель	
Предметный указатель	
Приложение	422

Ä