УДК 661.7 ББК 35.11 Б94

Печатается по решению редакционно-издательского совета Казанского национального исследовательского технологического университета

Рецензенты:

зав. лабораторией элементоорганического синтеза им. А. Н. Пудовика ИОФХ им. А.Е.Арбузова КНЦ РАН д-р хим. наук, проф. А. Р. Бурилов доцент каф. физической химии Казанского (Приволжского) федерального университета, канд. хим. наук С. Р. Егорова

Бухаров С. В.

Б94 Химия и технология антиоксидантов химических и биологических систем: учебное пособие / С. В. Бухаров, Г. Н. Нугуманова; Минобрнауки России, Казан. нац. исслед. технол. ун-т. – Казань: Изд-во КНИТУ, 2018.-152 с.

ISBN 978-5-7882-2338-4

Изложены теоретические основы процесса старения полимеров и механизмов действия стабилизаторов и антиокислительных присадок к смазочным маслам и топливам. Рассмотрены химические свойства, сырьевая база, закономерности протекания основных и побочных процессов получения, технологические схемы производства, области применения стабилизаторов полимеров, присадок к смазочным маслам и топливам. Обсуждена роль активных форм кислорода и особенности протекания радикально-цепных окислительных процессов в живых организмах, рассмотрены основные типы природных и синтетических биоантиоксидантов.

Предназначено для магистров, обучающихся по направлению 18.04.01 «Химическая технология» по программам «Химия и технология биологически активных соединений в медицине и фармации» и «Химия и технология продуктов тонкого органического синтеза», изучающих дисциплины «Химия и технология антиоксидантов химических и биологических систем» и «Химия и технология тонкого органического синтеза».

Подготовлено на кафедре технологии основного органического и нефтехимического синтеза.

УДК 661.7 ББК 35.11

ISBN 978-5-7882-2338-4

- © Бухаров С. В., Нугуманова Г. Н., 2018
- © Казанский национальный исследовательский технологический университет, 2018

Ä

СОДЕРЖАНИЕ

Введение	6
1. Антиоксиданты полимеров, смазочных масел и	
топлив	9
1.1. Старение полимеров и механизмы действия	
стабилизаторов	9
Вопросы для самоконтроля	18
1.2. Аминные стабилизаторы	18
1.2.1. Сырьевая база аминных стабилизаторов	19
1.2.2. Реакции, лежащие в основе получения аминных	
стабилизаторов	19
1.2.3. Производство аминных стабилизаторов	24
Вопросы для самоконтроля	35
1.3. Фенольные стабилизаторы	37
1.3.1. Сырьевая база и классификация фенольных	
стабилизаторов	37
1.3.2. Реакции, лежащие в основе получения фенольных	
стабилизаторов	39
1.3.3. Производство фенольных стабилизаторов	47
1.3.4. Вопросы для самоконтроля	53
1.4. Фосфор-,серу- и металлсодержащие стабилизаторы	53
1.4.1. Эфиры фосфористой кислоты	54
1.4.2. Эфиры тио(дипропионовой) кислоты	56
1.4.3. Металлсодержащие стабилизаторы	57
Вопросы для самоконтроля	58
1.5. Присадки к смазочным маслам и топливам,	
обладающие антиокислительным действием	59
1.5.1. Антиокислительные присадки к маслам	
(антиоксиданты, дезактиваторы металлов)	59
1.5.2. Моющие и диспергирующие присадки	61
1.5.3. Противозадирные присадки	68
1.5.4. Антиокислительные и диспергирующие присадки к	
топливам	69
Вопросы для самоконтроля	70
1.6. Тестовые задания к разделу 1	71

Α

2. Природные биоантиоксиданты	84
2.1. Радикально-цепные окислительные процессы в	
живых организмах	84
2.2. Витамин Е (токоферолы) и коантиоксиданты	94
2.3. Коензимы Q (убихиноны)	97
2.4. Флавоноиды	98
2.5. Гормоны	102
2.6. Гидроксифенилкарбоновые кислоты	104
2.7. Мочевая кислота	10:
2.8. SH-содержащие соединения	10
2.9. Каротиноиды	10′
Вопросы для самоконтроля	11
3. Синтетические биоантиоксиданты	11
3.1 Модифицированные природные биоантиоксиданты	11
3.1.1. Производные витамина Е (α-токоферола)	11
3.1.2. Производные убихинона, флаваноидов и галловой	
кислоты	11
3.1.3. Ионы Скулачева	11
3.1.4. Аналоги пиридоксина	11
3.2 Биоантиоксиданты на основе пространственно	
затрудненных фенолов	12
3.2.1. Ионол и его водорастворимые производные	12
3.2.2. Сульфиды пространственно затрудненных фенолов	12
3.2.3. Синтетические биоантиоксиданты ряда ИХФАНов и	
изоборнилфенолов	12
3.2.4. Фенольные антиоксиданты на основе	
водорастворимых полимеров	12
3.2.5. Фенольные антиоксиданты на каликсареновой	
платформе	12
3.3 «Гибридные соединения» на основе пространственно	
затрудненных фенолов и других биологически активных	
веществ	12
3.3.1 Пространственно затрудненные фенольные	12
производные изатина	12
3.3.2 Пространственно затрудненные фенольные	14
производные изониазида	13
3.3.3 Пространственно затрудненные фенольные	13
2.3.3 пространственно затрудненные фенольные	13
A V II DUIGID NI II CIVINI II DINA TILIUNI ABU/I DIDE	

Вопросы для самоконтроля	141
4. Лабораторный практикум	142
14.1. Лабораторная работа №1: Синтез тиосемикарбазона	
1-(3,5-ди-трет-бутил-4-гидроксибензил)-1Н-индол-2,3-	
диона	142
4.2. Лабораторная работа №2: Оценка антирадикальной	
активности синтезированных соединений в реакции с	
дифенилпикрилгидразилом	145
Заключение	149
Библиографический список	151