Интернет-магазин

http://shop.rcd.ru

- физика
- математика
- биология
- нефтегазовые технологии

Толмачёв В. В., Скрипник Ф. В.

Физические основы электроники. — Изд. 2-е., испр. и доп. — М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2011.-496 с.

В пособии на элементарном уровне излагаются основы квантовой механики и статистики, необходимые для понимания квантовой теории полупроводников, лежащей в основе твёрдотельной электроники. Также в пособии подробно рассмотрены основные вопросы физики полупроводниковых приборов, в частности диод с pn-переходом и pnp-транзистор.

Пособие предназначено студентам младших курсов технических вузов и университетов, изучающим курсы твёрдотельной электроники, а также всем, интересующимся основами твёрдотельной электроники.

ISBN 978-5-93972-889-8

- © В. В. Толмачёв, Ф. В. Скрипник, 2011
- © Ижевский институт компьютерных исследований, 2011

http://shop.rcd.ru http://ics.org.ru

Оглавление

Предисловие к первому изданию		9
Предис	ловие ко второму изданию	10
Введені	ие	11
Глава	1. Корпускулярно-волновой дуализм фотонов	14
1.1.	Становление корпускулярных и волновых представлений	
	о природе света	14
1.2.	Эксперименты по тепловому излучению и по излучению раз-	
	реженных газов	27
1.3.	Вывод формулы Планка для равновесного теплового элек-	
	тромагнитного излучения	34
	Метод суперпозиции и разделения переменных Фурье	34
	Мо́ды электромагнитного излучения в кубической полости	39
	Распределение мод по частотам	46
	Связь $u(\omega)$ с $E(\omega)$	48
	Применение теоремы о равномерном распределении	
	энергии	56
	Энергия классического или квантового осциллятора	60
	Вывод законов Стефана – Больцмана и Вина	65
1.4.		68
	Фотоэффект	69
	Эффект Комптона	74
	Дополнение 1 к гл. 1	76
	Ранние исследования по физической оптике	76
	Исследования теплового излучения	79
	Исследования оптического излучения	82
	Дополнение 2 к гл. 1	
	История открытия формулы Планка	88
	Распределение энергии по степеням свободы	
	Исследования теплоёмкости твёрдых тел	103

• • •

Ä

Глава	2. Корпускулярно-волновой дуализм электронов	108
2.1.	Дебройлевская длина волны	108
2.2.	Корпускулярные свойства электрона	111
	Эксперимент Дж. Дж. Томсона с катодно-лучевой трубкой	111
	Измерение заряда электрона	
	Эксперимент Кауфмана	121
	Спин электрона. Эксперимент Штерна – Герлаха	126
2.3.		
	Измерение длины волны света и рентгеновских лучей	130
	Эксперимент Дэвиссона и Джермера	133
	Эксперимент Дж. П. Томсона	138
2.4.	Атомный электрон	140
	Теория Бора атома водорода	140
	Дополнение к гл. 2	148
	Исследования электрического газового разряда	148
Глава	3. Физика корпускулярно-волнового дуализма	152
	Квантовая механика	
3.2.	Соотношение неопределённостей	
3.3.	Копенгагенская интерпретация квантовой механики	158
Глава -	4. Модельные одномерные квантово-механические задачи	162
4.1.		
4.2.	Задача об одномерной прямоугольной потенциальной яме	
	с бесконечными стенками	171
	Условие Борна – Кармана	175
4.3.	Задача об одномерном прямоугольном потенциальном барьере	177
4.4.	Задача о двойной одномерной прямоугольной потенциаль-	
	ной яме	183
	Дополнение 1 к гл. 4	
	Дельта-функция Дира́ка	
	Дополнение 2 к гл. 4	
	Операторы физических величин	194
	Проблема на собственные значения и собственные функ-	
	ции	196
	Физический смысл собственных значений и собствен-	
	ных функций оператора физической величины	
	Соотношение непределённостей	211

Глава	5. Распределение Ферми-Дира́ка	214
	Вывод распределения Ферми-Дирака по Больцману	
	Состояния электрона в кубическом ящике	
	Больцмановский способ описания макроскопических со-	
	стояний	220
	Применение рассуждения Больцмана к электронному газу	
	Нахождение значений α и β	226
5.2.	Получение распределения Максвелла из распределения Ферми	_
	Дира́ка	228
	Дополнение 1 к гл. 5	231
	Метод неопределённых множителей Лагранжа	231
	Дополнение 2 к гл. 5	
	Вывод формулы Планка по Больцману	234
	Математическое описание неравновесных состояний газа	
	Применение рассуждения Больцмана к фотонному газу .	237
	Нахождение значения множителя β	
	Дополнение 3 к гл. 5	246
	Вывод формулы Больцмана о связи энтропии с вероят-	
	ностью состояния	246
	Неравновесные состояния газа	247
	Неравновесные состояния, однородные по плотности	248
	Отыскание равновесного состояния	252
	Распределение Максвелла	255
	Неравновесные состояния, однородные по температуре .	258
	Отыскание равновесного состояния	259
	Формула Больцмана	260
Глава	6. Основы квантовой теории металлов	
6.1.	F	
6.2.	======================================	270
6.3.		
	при малых температурах	
6.4.	Термоэлектронная эмиссия	
	Формула Ричардсона – Дэшмана	
	Теория Шоттки	
6.5.	Контакт двух металлов	
	Дополнение 1 к гл. 6. Вычисления $\mu(T)$	
	Дополнение 2 к гл. 6. Вычисление U/V	286

Глава	7. Модель Кронига – Пенни	
	А. МОДЕЛЬ КРОНИГА-ПЕННИ БЕЗ ВНЕШНЕГО ПОЛЯ	290
7.1.	Решение уравнения Шредингера модели Кронига – Пенни	290
	Исходная задача	291
	Изменённая задача	292
	Оператор трансляции	294
	Теорема Блоха	
7.2.		
7.3.	Исследование энергетического спектра в пределе бесконечно	
	сильной связи	304
7.4.	Исследование энергетического спектра в пределе нулевой	
	связи	306
	Исследование трансцендентного уравнения для различ-	
	ных значений константы распространения	307
	Исследование трансцендентного уравнения для различ-	
	ных значений проекции волнового вектора	
	Зоны Бриллюэна	313
7.5.	r	
	сильной связи	314
	Б. МОДЕЛЬ КРОНИГА-ПЕННИ С МНОГИМИ ЭЛЕКТРО-	
	НАМИ	
7.6.	Модель Кронига – Пенни с многими электронами	318
	В. МОДЕЛЬ КРОНИГА-ПЕННИ ВО ВНЕШНЕМ ЭЛЕКТ-	
	РИЧЕСКОМ ПОЛЕ	
7.7.	'' 1 1	
	ского поля	321
	Строгий вывод формулы для групповой скорости элек-	
	трона	
	Движение электрона во внешнем поле	
	Эффективная масса электрона	
	Голые и одетые электроны	
	Движение дырки во внешнем поле	
	Дополнение 1 к гл. 7	341
	Оператор Гамильтона в пространстве периодических	2.41
	функций	341
	Дополнение 2 к гл. 7	
	Решение уравнения Шредингера в случае слабой связи .	343
	Построение решений при $V_0=0$	
	Построение решений при малом $V_0 \neq 0$	345

• • •

Ä

Глава 8	8. Теория электропроводности полупроводников	353
	А. КОНЦЕНТРАЦИИ ЭЛЕКТРОНОВ И ДЫРОК В ПОЛУ-	
	ПРОВОДНИКАХ	353
8.1.	Одноэлектронные состояния системы свободных электронов	
	Задача об электроне в трёхмерном кубическом ящике	355
8.2.		
	Эксперимент Хайнеса и Шокли	358
	Эффект Холла	360
8.3.	Равновесные концентрации электронов и дырок в чистом по-	
	лупроводнике	
	Закон действующих масс	
	Химический потенциал	367
8.4.		
	полупроводниках	
	Примесные полупроводники	371
	Энергии ионизации и электронного сродства атомов при-	
	меси	
	Концентрация электронов в донорном полупроводнике	
	Концентрации дырок в акцепторном полупроводнике	382
	Б. СИСТЕМА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ЛО-	205
0.5	КАЛЬНЫХ БАЛАНСОВ	
8.5.	7 T	
	Дрейф носителей электрического тока	
	Диффузия носителей тока Генерация и рекомбинация носителей тока	
	Уравнения локальных балансов электронов и дырок	
8.6.	Примеры решения системы уравнений балансов электронов	
6.0.	и дырок	303
	В. ТЕОРИЯ PN -ПЕРЕХОДА И PNP -ТРАНЗИСТОРА	397
8.7.	Теория <i>pn</i> -перехода	
0.7.	Контактная разность потенциалов	
	Качественное объяснение контактной разности потенци-	
	алов	
	Теория Шокли равновесного <i>pn</i> -перехода	
	Вольт-амперная характеристика	
	Основные законы pn -перехода	
	Формула Шокли	
	Качественное объяснение выпрямляющего действия pn -пе	
	рехода	

Оглавление

	Зависимость границ а и о обедненного слож от прило-
	женного напряжения V_a . Электрическая ёмкость pn -пе-
	рехода
8.8.	Транзистор с <i>pnp</i> -переходом
	Дополнение 1 к гл. 8
	Графическое изображение искривлённых зон <i>pn</i> -перехода 423
	Дополнение 2 к гл. 8
	Контакт полупроводник – металл
	Теория Шоттки
	Теория Бардина
	Контакт металл – диэлектрик – полупроводник 434
	Полевой транзистор
	Дополнение 3 к гл. 8
	Полупроводниковые приборы
	Туннельный диод
	Диод Зинера и лавинный диод
	Фоторезистор
	Фотодиод
	Светодиод и лазерный диод
	Солнечные батареи
	Дополнение 4 к гл. 8
	Фазовое и химическое равновесия
	Открытые и закрытые термодинамические системы 453
	Принципы минимумов потенциалов
	Использование принципа минимума
	Дополнение 5 к гл. 8
	Электрохимическое равновесие 470
	Гальванический элемент
	Условие электрохимического равновесия 471
	Химические потенциалы
	Закон разбавления Оствальда и формула Нернста 478
D	
	ндуемая литература
Предме	тный указатель
Именно	рй указатель