УДК 624.04 ББК 38.112 Г19

Рецензенты:

доктор физико-математических наук, профессор А.А. Локтев, заведующий кафедрой «Транспортное строительство» Российского университета транспорта (РУТ МИИТ); доктор технических наук А.М. Ибрагимов, профессор кафедры металлических и деревянных конструкций НИУ МГСУ

Ганджунцев, М.И.

Г19 Основы динамики и устойчивости стержневых систем [Электронный ресурс] : учебнометодическое пособие / М.И. Ганджунцев, Р.М. Аль Малюль, А.Ю. Ушаков ; Министерство науки и высшего образования Российской Федерации, Национальный исследовательский Московский государственный строительный университет, кафедра строительной и теоретической механики. — Электрон. дан. и прогр. (9,1 Мб). — Москва : Издательство МИСИ – МГСУ, 2020. — Режим доступа : http://lib.mgsu.ru/. — Загл. с титул. экрана.

ISBN 978-5-7264-2334-0 (сетевое) ISBN 978-5-7264-2335-7 (печатное)

В учебно-методическом пособии рассмотрены наиболее характерные задачи расчета стержневых систем на наиболее часто встречающиеся динамические воздействия и устойчивость. Приведены подробные примеры расчета с необходимыми пояснениями, которым предшествует краткое изложение теоретических основ расчетов.

Для обучающихся по направлению подготовки 08.05.01 Строительство уникальных зданий и сооружений.

Учебное электронное издание

© ФГБОУ ВО «НИУ МГСУ», 2020

Оглавление

Bl	ВЕДЕНИЕ	. 5
1.	ОСНОВЫ ДИНАМИКИ СТЕРЖНЕВЫХ СИСТЕМ	. 6
	1.1. Общие сведения о динамических расчетах конструкций	. 6
	1.1.1. Основные виды динамических воздействий	
	1.1.2. Степень свободы в динамике сооружений	
	1.1.3. Способы решения задач динамики сооружений	
	1.2. Свободные колебания системы без учета затухания	
	1.2.1. Свободные колебания системы с одной степенью свободы без учета	
	затухания	. 9
	1.2.2. Свободные колебания системы с конечным числом степеней свободы	
	1.3. Свободные колебания системы с одной степенью свободы с учетом затухания	20
	1.4. Энергетический способ определения частоты собственных колебаний системы	23
	1.5. Вынужденные колебания системы без учета затухания	27
	1.5.1. Вынужденные колебания системы с одной степенью свободы без учета	
	затухания	27
	1.5.2. Вынужденные колебания системы с конечным числом степеней свободы	
	без учета затухания	29
	1.6. Вынужденные колебания системы с одной степенью свободы с учетом	
	затухания	
	1.7. Использование симметрии при динамическом расчете рам	47
2.	РАСЧЕТ СТЕРЖНЕВЫХ СИСТЕМ НА УСТОЙЧИВОСТЬ	52
	2.1. Понятие о потере устойчивости и критической нагрузке	52
	2.2. Устойчивость 1-го рода, методы расчета	
	2.3. Дифференциальное уравнение центральносжатого стержня и его решение	6 0
	2.4. Расчет плоских рам на устойчивость первого рода методом перемещений	66
	2.5. Деформационный расчет рам на устойчивость второго рода	76
БІ	ИБЛИОГРАФИЧЕСКИЙ СПИСОК	84